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ONE-STAGE AND TWO-STAGE ENTRY COURNOT
EQUILIBRIA

JAVIER M. LOPEZ-CUNAT
Unaversity of Alicante

We show that a one stage (resp. two-stage) entry Cournot equilibrium with
n active firms is a two stage (resp. one stage) entry Cournot equilibrium of
the total Cournot output for the n firms decreases (resp. increases) with the
entry of one nonoperating firm. This imphes that the consequences of both
entry notions differ. In particular, one stage entry Cournot equilibria may
not exst when a two-stage entry Cournot equilibria do emst. (JEL L13, D43)

1. Introduction

One of the themes of modern Industrial Economics is the analysis of
the effects and viability of entry into oligopolistic Cournot industries,
as a consequence of government regulatory practices on mergers and
competition. The theoretical models commoﬁly used focus on two
different types of behavior. In the first one, the entrant firm makes its
decision about entry by taking into account its maximal profit, given
the total equilibrium output of the active firms excluded itself. In the
second one, it considers its profit when all active firms included itself
are taken into account. The first behavior corresponds to the definition
of one-stage Cournot equilibrium with free entry [see, for instance
Laffont (1988, ch. 3)]; here the game is one in which firms (players)
decide simultaneously on entry and production. The second behavior
corresponds to the definition of two-stage Cournot equilibrium with
free entry [see, for instance, Mas-Colell et al. (1995, ch. 12)]; this case
is modeled as a dynamic game in which firms decide first on entry and,
in a second stage, the firms that have entered compete in quantities.

No attention has been paid on the analysis of the differences between
these two entry notions, so far to the best of our knowledge. Nevert-
heless, in the free entry literature there is a number of contributions
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assuming one of the two notions. A one-stage free entry is assumed
by Novshek (1980) to show that the market outcome is approxima-
tely competitive if firms are small relative to the market. It is also
supposed by Ushio (1983) to study the Cournot equilibrium with free
entry when the average cost functions are decreasing. Laffont and Mo-
reaux (1983) prove that free entry Cournot equilibria may not exist,
in labor-managed economies, assuming a one-stage setting. Deman-
ge (1986) analyzes the stability of the one-stage Cournot equilibrium
with free entry. A one-stage setting is also assumed in Novshek and
Sonnenschein (1987) who describe the theory of perfect competition.
The effects of entry are analyzed in Frank (1965) and Seade (1980),
assuming a two-stage setting. The inefficiency of Cournot equilibrium
with free entry is the center of attention in Mankiw and Whinston
(1986) who consider a two-stage setting. Using a two-stage context,
Harrington (1991) investigates the degree of collusion that can be sus-
tained at a free entry equilibrium. Economides (1993) compares the
symmetric Cournot games with a game of simultaneous free entry and
sequential output choices for which the free entry Cournot equilibria
considered belong to the two-stage class.

In the entry deterrence literature, two-stage settings are usually consi-
dered. Milgrom and Roberts (1982a) show that, in a two-stage context,
predation may be rational against early entrants because it yields a
reputation which deters other entrants. Milgrom and Roberts (1982b)
analyze limit pricing and entry in an incomplete information two-stage
setting. Entry deterrence is examined by Basu and Singh (1990) in a
duopoly where the post-entry game is Stackelberg. In a two-stage
game, Estrin and Meza (1995) show that a public firm committed to
price at cost may be unable to deter entry even if it is socially desirable
that is should do so. Schwartz and Thompson (1986) and Veendorp
(1991) consider entry deterrence when the established firm may create
independent divisions to deter posterior entry. There are also some
articles on entry deterrence which consider one-stage settings [see, for
instance, Gilbert and Vives (1986)].

In the present paper we show that the consequences of both entry no-
tions differ. The difference results from the fact that the total output
of rival firms, considered by an entrant firm which has to decide on
its entry, may be different in the one-stage setting and in the two-
stage one. We show that a one-stage (resp. two-stage) entry Cournot
equilibrium with n active firms is a two-stage (resp. one-stage) entry
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Cournot equilibrium if the total Cournot output for the n firms de-
creases (resp. increases) with the entry of one nonoperating firm. We
prove that the sets of the one-stage and the two-stage entry equilibria
may be different in a reasonable Cournot setting in which firms are
identical, and the Cournot equilibria exist and are symmetric, interior
and unique. When the Cournot output per firm behaves, following the
terminology of Seade (1980), in a “perverse"form (it strictly increases
with entry), one-stage entry (pure strategy) equilibria may not exist
while two-stage entry (pure strategy) equilibria do exist.

The rest of the paper is organized as follows. Section 2 contains the
general model in which firms may be asymmetric. In Section 3 we
prove the main result about the relationship between the one-stage
and the two-stage entry Cournot equilibria. The symmetric model, its
consequences and several examples are contained in Section 4. Finally,
Section 5 gathers our conclusions.

2. The model

There is an infinite set of firms, each one indexed by : = 1,2,.... Firm
1 may enter the market producing the output z, > 0. Firms’ cost
functions Cy(z,), » = 1,2..., are assumed to be continuously differen-
tiable. The inverse demand function P : Ry +— R is decreasing in
total output and it is assumed to be continuously differentiable in an
interval [0, §) which contains all total output coming from the Cournot
equilibria corresponding to finite sets of firms.’

DEFINITION 1% Given a finite set of firms N with cardinal number

#N = n, the vector of outputs z(n) = (z,(n)).en € RY is a Cournot
equilibrium for the firms in N if and only if

P(z(n))z,(n) = Cy(z,(n)) > P(z™*(n)+z,)z, — C(z,),Va, > 0,Vi € N.

We will write CE(N) C R, to denote the set of Cournot equilibria
for the set N, with #N =n.

The two representations of the entry process which will be compared
are given in the following definitions, where € > 0 is the setup (entry)
cost.

'This assumption, which allows for linear mverse demand functions, 1s verified 1
the symmetric setting examined in Section 4. It 1s also assumed, for instance, in
Friedman (1977, p. 169-171)

p) ) —
Gwen z = (21, .,2zn) € %, we use the notations 27" =
n —
(21, -, Z-1,%41, Zn)andz=3 . 2% ER, 27" = E;zl 2 ER
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DEFINITION 2 z(n) € CE(N), #N = n, is a one-stage entry equili-
brium if

a) P(z(n))z,(n) — Cu(z,(n)) > €, for alli € N,
b) P(z(n) +x,)z, — C,)(z,) <€ forall z, > 0 and all y £N.

DEFINITION 3 z(n) € CE(N), #N = n, is a two-stage entry equili-
brium if

a) P(z(n))z,(n) — Cy(x,(n)) > ¢, for alli € N,

b) P(z(n+1))z,;(n+1)—C)(z,(n+1)) < ¢ forall z(n+1) €« CE(NU
{7}) and all  £EN.

Definition 2 corresponds to the equilibrium outcomes of a game in
which firms (players) decide simultaneously on entry and production.
When a firm enters the industry, it incurs the setup cost €. Otherwise,
it gets zero profit. Definition 3 concerns the equilibrium outcomes of
a dynamic game in which firms decide first on entry and, in a second
stage, the firms that have entered (and payed the setup cost) compe-
te in quantities. Last definition stems from the concept of subgame
perfect Nash equilibrium in the two-stage game.

3. One-Stage and two-stage entry equilibria

We will show that these two types of entry have different consequences
on the change in the total Cournot output. Given z(n) € CE(N) with
#N = n, we consider the following conditions:

(I0)Forall j ¢ Nand all z(n+1) €
CE(NU{j}),z7?(n+1) > z(n).
(DO) For all 3 ¢ N and allz(n+1) €
CE(N U{3}),27(n+1) < z{n)

Note that Condition IO (resp. DO) holds when the individual Cournot
output increases (resp. decreases) with the number of firms. Consider
a set of firms N, with #N = n, that operate in the market, and an
outsider firm j ¢ N. To make its decision about entry, firm j must
compare the entry cost with its optimal gross profit when it enters,
which depends on the total output produced by the n firms in N. In
the one-stage case, this total output agrees with the total Cournot
output of the n operating firms, because the firms in N do not react
against the entry of firm j. In the two-stage case, however, these
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firms react and firm j will have to consider the total Cournot output
produced by n -+ 1 operating firms. Since the inverse demand function
is decreasing, the gross profit considered by firm ¢ in the one-stage
case is higher (resp. lower) than in the two-state case if the considered
total output in the one-stage case is lower (resp. higher) than in the
two-stage one. This leads us to the following result.

ProPOSITION 1 Given z(n) € CE(N) with #N = n:

a) If z(n) is a one-stage entry equilibrium that verifies IO then it is
also a two-stage entry equilibrium.

b) If z(n) is a two-stage entry equilibrium that verifies DO then it is
also a one-stage entry equilibrium.

PRrROOF: Let z(n), #N = n, be a one-stage entry equilibrium that
satisfies I0. Consider 7 ¢ N and z(n + 1) € CE(N U {¢}). From IO,
z(n+1) —z,(n+1) > z(n). Since P(-) is a decreasing function and
z(n) satisfies Definition 2(b), we have

Pla(n + 1), (n+1) - Gy(ay(n + 1) <
< P(z(n)+z,(n+1))z,(n+1) - C)(z,(n+1)) <e

Therefore, we get the inequality (b) in Definition 3 and x(n) must be
a two-stage entry equilibrium.

Now, let z(n), #N = n, be a two-stage entry equilibrium that satisfies
DO. Consider j ¢ N and 2(n + 1) € CE(N U {i}). From DO, Q, =
z(n+1) —z(n+1) <z(n). As z(n+1) € CE(N U {i}), it follows

P(Q; +z;(n+1))z)(n+1) - Cy(z;(n+1)) > 1]
> P(Q; + )z, - Cy(xy), Va, >0.

Since P(-) is decreasing,
P(Q; + z5)z) — Cy(xy) 2 Pla(n) + z5)z; — Cy(xy), Va; 0. [2]

Finally, since 2(n) verifies Definition 3(b), and from [1] and [2], we
obtain inequality (b) in Definition 2. Thus, z(n) must be a one-stage
entry equilibrium. Q.E.D.

Proposition 1 implies that the relationship between the set of one-stage
and two-stage entry equilibria depends on the properties of Cournot
equilibria. In Section 4 we present an oligopolistic model in which
firms are identical and the Cournot equilibria exist and are symmetric,
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interior and unique, for any given number of firms. This allows to
consider examples where Conditions IO or DO hold. To conclude this
section, let us say a little more about what happens under the “strong
concavity condition” (SCC thereafter) considered by Corchén (1994)
for aggregative games.

In an aggregative game, the payoff function of a player can be written
as a function of the player’s own (one dimensional) strategy and the
sum of the strategies of all players. So, the Cournot model is an
aggregative game. For each firm 1, let T,(x,,Q) = P(Q)z, + P(Q) —
C!(z,) be the marginal profit function for firm ¢ when its production
is z, and the total output is Q. Condition SCC says that T,(z,, Q)
is strictly decreasing on x, and @, for all player i. Note that this
condition holds when P(-) is strictly decreasing and concave and all
cost functions are convex. Under SCC, Corchén (1994) proves that an
increase in the number of players decreases the value of the strategy
of each incumbent player, and increases the sum of all strategies. In
our oligopolistic setting, this implies that, under SCC, all Cournot
equilibria verify Condition DO and any two-stage entry equilibrium is
a one-stage entry equilibrium. This is stated in the following corollary
whose demonstration is included for the sake of completeness.

COROLLARY 1 Under SCC, any two-stage entry equilibrium is a one-
stage entry equilibrium.

Proor: Consider z(n) € CE(N), #N =n, 3 ¢ N and z(n +1) €
CE(N U {1}).

Suppose z(n) > z(n + 1). It follows that there is 2 € N such that
x,(n) > 0 and, therefore, T,(z,(n),z(n)) = 0. If z,(n+1) =0
we have T;(0,z(n + 1)) < 0. So, under SCC, T;(z,(n),z(n + 1)) >
T.(z,(n),z(n)) = 0 > T,(0,z(n 4+ 1)). This contradicts that T,(z,, Q)
is decreasing on z,. Thus, we necessarily have z,(n + 1) > 0. Since
Tz, (n),z(n)) = 0 = T(x,(n + 1),z(n + 1)), from SCC and z(n) >
z(n + 1), it follows z,(n) < x,(n + 1). This argument can be repli-
cated for any ¢ € N such that x,(n) > 0. In consequence, we obtain
z(n) < z(n+ 1) which contradicts the initial supposition. This proves
that z(n) < z(n+1).

Now, suppose that there exists + € N such that z,(n + 1) > z,(n).
From SCC, this implies T,(z,(n),z(n)) < 0= T,(z,(n+1),z(n+1)) <

T,(z,(n+1),z(n)), and it follows the contradiction z,(n) > z,(n + 1).
Therefore, we necessarily have x,(n+1) < x,(n) for all ¢ € N.
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This shows that any z(n) € CE(N), #N = n, satisfles Condition DO,
and, from Proposition 1, any two-stage entry equilibrium is a one-stage
entry equilibrium. Q.E.D.

4. Symmetric firms

In this section we assume identical cost functions, denoted by C{(:).
The following “regularity” assumptions imply an interior and unique
Cournot equilibrium for any number of firms 7.

ASSUMPTION 1 The cost function C' : R — Ry is twice continuously
differentiable and convex.

ASSUMPTION 2 The inverse demand function P : Ry — Ry Is conti-
nuous. There exists a > 0 such that P(x) < C'(0) for all z > .. P is
twice continuously differentiable and strictly decreasing on (0, o). P
is continuously differentiable and nonincreasing on (o, -+00).

AssUMPTION 3 lim,_,g+ {P'(z)z + P(z) — C'(z)} > 0.

ASSUMPTION 4 P'(z + z)z + 2P'(z + z) < 0 for all z > 0 and all
x>0suchthat 0 < z+ 1z < a.

Our assumptions are related to the sufficient conditions for the exis-
tence and uniqueness of Cournot equilibria of Friedman (1977). Ne-
vertheless, there are several differences. First, we consider identical
cost functions unlike Friedman (1977). Second, in Friedman’s model,
the market price is zero if total output is high enough. In such a case,
it is reasonable to consider compact strategy sets (this is assumed in
Friedman (1977) for the existence and uniqueness of equilibria). As-
sumption 2 allows a strictly positive market price and, together with
Assumption 1, implies that strategy sets can be reduced to the com-
pact set [0, a]. Example 2 described below satisfies Assumptions 1-4
but has an inverse demand function which does not agree with the
Friedman’s setting. However, our model is not more general that the
symmetric version of Friedman’s one. He assumes strictly increasing
cost functions with marginal costs that may be zero at zero output,
whereas Assumption 2 implies C’(0) > 0. Our proofs hold also assu-
ming P(z) < C'(0) for all > « (a case in which C’(0) may be zero)
if we suppose a strictly convex cost function C(-). Third, Friedman
assumes that firms’ profit functions are strictly concave and twice dif-
ferentiable on the compact strategy sets. In our setting, Assumptions
1 and 4 guarantee this property about profit functions. Together with
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Assumption 2, they imply the existence of Cournot equilibria forn > 1
firms. Moreover, if 3 holds (which entails P(0) > C’(0)), all equilibria
are interior. These results hold also when we consider different cost
functions C;(+), ¢ = 1,...,n, verifying 1-4, with the additional con-
dition C;(0) = C7(0) for all i and all j (proofs are similar to those
contained in the Appendix). Finally, to show the uniqueness of Cour-
not equilibrium, Friedman (1977) assumes a strong condition, about
the second derivatives of profit functions, which implies that the best
reply functions are contractions. As Friedman (1977) notes, the unrea-
sonableness of that condition is one of the weaknesses of his quantity
model. Our assumptions does not imply that strong condition (Exam-
ple 2 described bellow does not satisfy it). Nevertheless, as we assume
identical firms, the Cournot equilibrium for n firms is symmetric and,
from 4, has to be unique (see the Appendix).

Evidently, Assumptions 1-4 do not imply, and are not implied by, SCC
(see Example 2 below.)

Using standard techniques, we can show the following result:

PROPOSITION 2 Under Assumptions 1-4 the unique Cournot equili-
brium, for » firms, is € R} with z, = Q(n)/n Ve = 1,...,n, where

a) Q(:) is the only function that verifies

P QRN+ P@)-CQMN=0, Qe(0,0), t=1
b) Q(-) is differentiable and strictly increasing.

¢) the function t +— Q(t)/t is strictly decreasing, if P is concave on
(07 a)?

d) the function U(t) = P(Q(t))Q(t)/t—C(Q(t) /¢) is differentiable and
strictly decreasing.

PROOF: See the Appendix. Q.E.D.

Note that part ¢) of Proposition 2 is a specification of the consequences
of Condition SCC. Denoting ¢(t) = Q(t)/t for t > 1, in this symmetric
framework, Conditions I0 and DO are respectively equivalent to g(n+
1) > ¢(n) and ¢(n+1) < q(n). Assumptions 1-4 provide a reasonable
Cournot setting in which one-stage and two-stage entry equilibria may
be different. Proposition 2, d) implies that, in our symmetric setting,
the set of two-stage equilibria is characterized by the set of integers
n that verify U(n + 1) < € < U(n). So, this set is Np = {n} if
Un+1) <e<Un), and it is Np = {n,n +1} f U(n + 1) = €
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Let M(n) = maxy>0{P(Q(n) +y)y — C(y)} be the maximal profit
of a firm if it enters the market when there are other n active firms
producing Q(n). Thus, from Definition 2, in the symmetric setting,
the set of one-stage entry equilibria is characterized by the set Ny
composed of integers n which satisfy M(n) <e <U(n).

Propositions 1(b) and 2 imply that, for a concave inverse demand
function, the set of two-stage entry equilibria is contained in the set
of one-stage entry equilibria. Example 1 below shows that these sets
may not coincide. In general, this fact may occur when the individual
Cournot output function g(n) = Q(n)/n decreases with n.

ExaMPLE 1 For P(Q) = a—@Q and C(z) = cz with a = a > ¢, we have

Q(n) = ﬂl%_:nfl It is easy to show that, in this linear context, U(n) =

(—104_—";)2 and M(n) = (2—(“1:_—2))2 Therefore, the one-stage equilibria
are characterized by the integers in the set Ny = {ne N /v/2-1<
n < v — 1}, where v = (a — ¢)/\/e. The two-stage equilibria are
characterized by integers in theset No={n e N /y—2<n<~vy-1}.
It follows that N3 = N only when 2 < v < 3. Otherwise, we have
Ny C Ny

In symmetric settings in which g(n) is not decreasing in n, a case
referred to as “perverse” by Seade (1980), we can partially describe
the relationship between N1 and Ns.

COROLLARY 2 In the symmetric setting under Assumptions 1-4, sup-
pose that ¢(n) < ¢(n+1). Then U(n+1) < M(n) < min{U(n), M(n—
1)} and

a) Ny = Ny = {n} if M(n) <e < min{U(n), M(n —1)},
b) Ny =0 and Ny ={n} if U(n+1) <e< M(n),
) Ni={n+1} CNy={n,n+1} if Un+1) =

PRroor: First, let us show that the maximum defined by M(n) exists
and it is only achieved at a point y, € (0, & — Q(n)). Consider the
function V(n,y) = P(Q(n) + y)y — C(y). Iy > a — Q(n), from
Assumptions 1 and 2, it follows that a%V(’n,y) < P(Q(n)+y)—-C'(y) <
P(a) - C'(0) < 0. So, the maximum M (n) exists and it is reached
in the interval [0, o — Q(n)]. By Assumption 4, gyng(n,y) < 0 for
y € [0, a—Q(n)). From Proposition 2 and Assumption 1, %V(n, 0) >
P(Q(n)) — C'(g(n)) > 0. From 2 and considering § = a — Q(n) — h
where h > 0 is low enough, we have %V(n,gj) < Pla—h)—-C"(0) < 0.
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These facts imply that M(n) is only reached at a point y, € (0, o —
Q(n)).

Second, note that it follows M(n 4 1) < M(n) and M(n) < U(n) for
all n since Assumption 2 is assumed. On the other hand, given n such
that ¢(n) < g(n + 1), we have ng(n + 1) > ng(n) = Q(n) and this
implies U(n + 1) < M(n) as P(-) is assumed to be strictly decreasing
in (0, ). Therefore, U(n+1) < M(n) < min{U(n), M(n —1)} holds.

Finally, as U(:) and M(-) are strictly decreasing functions, assertions
(a), (b) and (c) immediately hold. Q.E.D.

Corollary 2 states that the set of the one-stage entry Cournot equi-
libria may be strictly contained in the set of the two-stage ones. In
particular, one-stage entry (pure strategy) equilibria may not exist
when two-stage entry (pure strategy) equilibria exist. The following
example illustrates above properties.

ExXAMPLE 2 Consider the hyperbolic inverse demand function P(Q) =
4/(Q + 1) and the linear cost function C(z) = x/10. For any a > 39,
Assumptions 1-4 hold. In this setting, we have

Q) = % (—20 +19% +24/10(10 — 19 + 10752)) :

Ult) = # (20 + 42082 — 2(1 + t)\/10(10 — 19t + 10t2)> :

We can easily obtain the following values of ¢(n), U(n) and M (n) for
n=123

gi) _Um) Mn)
5.3246 2.8351 14514
9.9772  0.9068 0.3052
8.7192 0.4123 0.1239

Therefore, when M(1) < e < U(1), we have N = Ny = {1}. If
U(2) < e < M(1), it follows Ny = and No = {1}. If U(2) = ¢, we
have N1 = {2} and Ny = {1,2}.

W N 3

5. Conclusions

Two different entry notions have been considered in the literature.
The one-stage concept corresponds to a game in which firms (players)
simultaneously decide on entry and production. The two-stage concept
refers to a dynamic game in which firms decide first on entry and, in
a second stage, compete in quantities.
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We show that, in a Cournot competition setting, both entry notions
differ. The disparity exists because of the different total output of
rival firms which is considered by an entrant firm when deciding on
its entry. We show that a one-stage (resp. two-stage) entry Cournot
equilibrium with n active firms is a two-stage (resp. one-stage) entry
Cournot equilibrium if the total Cournot output for the n firms decrea-
ses (resp. increases) with the entry of one nonoperating firm. Besides,
in a reasonable Cournot symmetric setting, we prove that the sets
of the one-stage and the two-stage entry equilibria may be different.
When the Cournot output per firm is strictly increasing in the num-
ber of active firms, one-stage entry equilibria may not exist whereas
two-stage entry equilibria exist.

Let us finalize this section with a comment about the comparison of the
two notions of entry when firms are asymmetric. In this more complex
setting, the results in Section 3 shows that, under SCC, any two-stage
entry equilibrium is a one-stage entry equilibrium. Although Example
1 corresponds to a symmetric setting, it suggests that the two sets
of equilibria may differ in an asymmetric setting under SCC. When
this condition is not satisfied, Example 2 (also in a symmetric setting)
suggests that the sets of the one-stage and two-stage entry Cournot
equilibria may be different.

Appendix: Proof of Proposition 2

In the symmetric setting, we will write CE(n), to denote the set of Cournot
equilibria when the number of firms in the market is n > 1. For each
v =1,...,n, consider firm #’s profit function F,(x) = P(3_z;)x, — C(z,)
and the correspondence R, : ’R,:L__I +— R4 such that

R,(z7") = argmax F,(z7", z,).

2,20
Evidently, z € CE(n) is verified if and only if 2* € R,(z™") for all = =
1,....n
LEMMA 1 Under Assumptions 1-4, CE(n) # 0.

PROOF: It can be shown that the best response correspondence 1s a con-
tinuous function which has a fixed point. The proof is standard and it is
omitted. Q.E.D.

LEMMA 2 Under Assumptions 1-4,
z€CE(Mn) = z<a z,>0, Ve=1...,n
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PROOF: Let x be a pomt in CE(n) which exists from the previous lemma.
Note that F,(-) may be not derivable with respect to @, when £ = a. Thus
we will consider two cases.

If z > «, there is ¢ for which z, > 0, and, from Assumptions 1, 2 and 3, it
follows E%E(a:_i,xl) < P(z)—C'(0) < 0. This contradicts z, € R,(z™?).
So, z £ a.

Now suppose £ = « and x, > 0. By continuity and from Assumption
2, there is € > 0 such that P(z) < C'(0) for all z > ov —¢. For § €
[0, min(e, z,)] consider the function g,(6) = F (7,2, —9). If 6§ > 0,

g.(8) = —[P(a—=6)—C"(0)] > 0. As g,(-) is continuous, there exists § > 0
such that F,(z7% x,) < F,(z7,z, — §), and this contradicts z, € R,(z™).
So, x < a.

To show z, > 0,7 = 1,...,n, when z € CE(n), suppose first z7* > 0
for a given ¢. Since x, € R,(x ™), if 2, = 0 we will have %E(m_l,()) =
P(z) — C'(0) < 0. There must exist j 7 ¢ such that =, > 0, and, from
Assumptions 1 and 2, E%FJ(JC‘] ,Z,) < P(z)—C"(0) < 0. This contradicts
z, € R)(z77). So, z, > 0 when 2™* > 0. Now, assume z~* = 0. In this
case (27", x,) = P(x,)z, — C(x,). From Assumption 3, %E(w‘z, 0) >
0 and, therefore, z;, > 0 because z, € R,(z™*). Q.E.D.

Let us prove the uniqueness of Cournot equilibrium and properties (a), (b),
(c) and (d) of Proposition 2. Let z an equilibrium for n firms. Previous
lemmas imply 0 < z, < a,2=1,...,n,0 <z < @ Then,

P(z)z,+P(z)—C'(z,) =0, Vo=1,...,n.

Since £ € (0, a), the function y — P'(z)y — C'(y) is strictly decreasing
by Assumptions 1 and 2. Then it follows that there is a unique solution of
P'(z)y — C'(y) = —P(z) and, therefore, the equilibrium has to be sym-
metric. Consider the function G(z,t) := P'(2)z/t + P(z) — C'(2/t) for
0<z<aandt>1 Fomland4, 2G = (1/t)[P"(z)z+(1+t)P'(2) -
C"(2/t)] < 0. Therefore, since G(z,n) = 0, the Cournot equilibrium z for
n firms must be unique.

By applying the implicit function theorem, there exists a continuously diffe-
rentiable function @(+) which satisfies G(Q(¢),t) = 0 for all ¢ > 1. There-
fore, if z € CE(n), z, = Q(n)/nfor alli = 1,...,n and assertion (a) in
Proposition 2 is verified.

From Assumptions 1 and 2, 2 5G = (2/tH)[C"(2/t) — P'(2)] > 0 when
0 < z < aand t > 1. Differentiating the expression G(Q(t),t) = 0, we
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have Q'(-) = -%G / %G > 0 and property (b) in Proposition 2 holds.

To prove part (c), note that the function ¢(t) := Q(t)/t for t > 1 verifies,
for all t > 1, 0 < tp(t) < a and G(ty(t),t) = 0. Differentiating the last
expression, we obtain

o' (B)te(t)P" (t(t)) + (1 + ) P'(tp(t)) — C"(e(1))] =
= o(t)[-P'(te(t) — p()P"(to(1))].

Then, for all ¢ > 1, from 1 and 4 it follows that ¢'(t) < 0 (resp. > 0) if
and only if —P'(t@(t)) — @(t)P"(te(t)) > 0 (resp. < 0). Consequently, if
P"() <0in (0, @), we have ¢/(-) < 0.

Finally, using the equation G(Q(t),t) = 0 to derive U(t) = P(Q(t))Q(t)/t—
C(Q(t)/t) for t > 1, we obtain

v =Pl {ew (1-1)+ %2} <o

t 1 t2
This proves part (d). Q.E.D.
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Resumen

Se prueba que un equilbrio de Cournot con entrada de una etapa (respectr-
vamente de dos etapas) con n empresas actwas es un equilibrio de Cournout
con entrada de dos etapas (respectiwamente de una etapa) s la cantidad total
producida por las n empresas decrece (respectivamente crece) con la entrada
de una empresa wmactwa. Esto implica que las consecuencias de ambas no-
crones de entrada son distintas. En particular, los equilibros de Cournot con
entrada de una etapa pueden no existir cuando existen equalibrios de Cournot
con entrada de dos etapas.



