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ESTIMATING BINARY CHOICE MODELS FROM
COHORT DATA

M. DOLORES COLLADO
Universidad Carlos III de Madrid

In this paper we discuss the estimation of binary choice models with individual
effects, when the data available are time series of independent cross-sections.
We specify a random effects model assuming that the conditional expectation
of the individual effects is a linear function of the explanatory variables, and
we show how to obtain a consistent estimator of the reduced form parame-
ters. Then, we consider a minimum distance estimator and a within-groups
estimator of the structural parameters, and we derive their asymptotic distri-
butions. Finally, we carry out some Monte Carlo simulations to analyze the
small sample performance of our estimators. (JEL C23)

1. Introduction

In this paper we discuss the estimation of binary choice models with
individual effects when the data are time series of independent cross-
sections, that is, when we observe independent samples of individuals
over time. The problems involved in the estimation are on the one
hand the non-linearity of these models, and on the other hand the fact
that we do not have panel data.

Binary choice models are relevant for empirical applications. For exam-
ple, when we estimate demand systems using household data, we find
that, for some goods, a substantial percentage of households do not
buy the good (tobacco is a clear example). If this is the case, we
will need to consider the household decision of whether to buy the
good, and therefore, we will need to estimate a binary choice mo-
del. An important issue in this kind of models is that in many cases,
the household purchasing decision is influenced by some household
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characteristics that are unobservable to the econometrician. If these
unobservable effects are correlated with the explanatory variables, the
model cannot be identified using a single cross-section. Nevertheless,
if the unobservable effects are constant over time, the model can be
identified using panel data.

The problem that arises at this stage is that for some countries, as for
the UK, there are no panel data on household expenditures. However,
in most of those countries a large survey on household consumption is
carried out with a regular periodicity (in the UK the Family Expen-
diture Survey provides detailed information on annual expenditures).
The difference of this type of data, compared to panel data, is that we
observe different individuals for different periods of time. Therefore,
the estimation methods for panel data can no longer be used with the
individual observations.

Deaton (1985) proposed an alternative approach to estimate linear
models of individual behaviour using micro data. If we have time series
of independent cross-sections, we can divide the population into groups
(cohorts) on the basis of a certain characteristic. At the population
level, the groups have to contain the same individuals over time. This
is a crucial requirement since the key idea of this approach is based on
the panel structure of the cohort population means. Although we do
not observe the cohort population means, we can nevertheless consider
the cohort sample means as estimates of the cohort population means,
what will provide a panel with measurement errors. The advantage
compared to the usual errors in variables problem is that, in this case,
we can estimate the variances of the measurement errors using the
individual data. For linear models, Deaton (1985) and Collado (1997)
showed that the estimated variances can be used to correct the classical
estimators for panel data.

The researcher has to decide how to define the cohorts. Notice that
the larger the cohorts are, the less important the measurement error
problem will be. However, since the cross-section dimension of the da-
ta set is finite, if the cohorts contain a large number of individuals, the
number of groups will be small, and therefore, the cross-section dimen-
sion of the cohort panel will not be very large. In most of the applied
research using cohort data (see Browning, Deaton and Irish (1985), At-
tanasio and Weber (1993) and Blundell, Browning and Meghir (1994)),
the variable used to define the cohorts is year of birth, and the sample
is divided in a small number of groups with a large number of obser-
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vations to avoid the measurement error problem. In those studies, the
time series dimension of the data set is large, and therefore, even if the
number of cohorts is not very large, the total number of observations
in the cohort panel is fairly large. Verbeek and Nijman (1992) analyze
the conditions for this approach to be valid for linear models. The
definition of the cohorts is an interesting question for applied resear-
ch, nevertheless, in this article, we will not discuss the cohort design.
However, it is worth to mention that for the discrete choice model, as
we will show below, we will need to estimate a probit model for each
period of time. Therefore, we will need to divide the population in a
reasonably large number of groups to rely our estimates in asymptotics
on the number of cohorts.

When we estimate linear models with individual effects using panel
data, the usual approach is to transform the model into first diffe-
rences or deviations from time means to eliminate the individual ef-
fects (see Hsiao (1986), and Arellano and Bover (1990) among others).
Unfortunately, due to the non-linearity of binary choice model, this
approach is no longer possible and we need additional assumptions
for identification. Chamberlain (1984) proposed to parameterize the
conditional expectation of the individual effects as a linear function of
the explanatory variables. Then, the latent variable on each period is
a function of all leads and lags of the explanatory variables, and the
reduced form parameters can be estimated using panel data. Once
we have the reduced form estimates, the structural parameters can be
estimated by minimum distance. The problem of this approach, when
we have time series of independent cross-sections, is that any indivi-
dual is just observed one period, and therefore, we do not observe any
lead or lag of the explanatory variables. In this article, we propose to
use the cohort sample means instead of the individual observations as
explanatory variables. Consequently, we will have a model where the
explanatory variables are correlated with the disturbances. However,
under normality, the covariance between the explanatory variables and
the disturbances is a known function of the variances of the measu-
rement errors. As mentioned above, the measurement error variances
can be estimated using the individual observations, and therefore, we
can correct the classical estimators for binary choice models. We will
show how to obtain a consistent estimator of the reduced form para-
meters and we will derive its asymptotic distribution. Then, using the
reduced form estimates, we will derive an optimal minimum distance
estimator of the structural parameters.
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In the context of panel data, Bover and Arellano (1997) proposed a
within-groups estimator of the structural parameters. This estimator
is also based on the reduced form estimates, and it is easier to calculate
than the minimum distance estimator. In this article, we show that
it is also possible to obtain a consistent within-groups estimator using
cohort data. Finally we carry out some Monte Carlo simulations to
analyze the small sample performance of our estimators.

The paper is organized as follows. In section 2, we present a binary
choice model with individual effects. We obtain a consistent estimator
of the reduced form parameters and we derive its asymptotic distri-
bution. Using this estimator, we can obtain a consistent estimator of
the structural parameters by minimum distance. In section 3, we con-
sider a within-groups estimator of the structural parameters, and we
calculate its asymptotic distribution. The finite sample performance
of the estimators is analyzed in section 4. We carry out some Monte
Carlo Simulations and we compare the results for different values of
the parameters. Section 5 concludes.

2. A binary choice model with individual effects

We consider the following linear model with individual effects
vi = T+ m; + vit, (t=1,...,T,i=1,...,N), [1]
where z,; is a k£ x 1 vector of exogenous variables such that
E(vit | 31, ..,%7,m;) =0.

n; is the unobservable individual effect and it is potentially corre-
lated with the explanatory variables. The dependent variable y;; is
not observed. What we observe is the binary variable y;; defined by
yir = Ly} > 0), where 1(A) is the indicator function. Given that y}; is
not observable, we do need additional assumptions on the distribution
of ; to identify 5. Chamberlain (1984) proposed to parameterize the
conditional expectation of 7; given the exogenous variables as a linear
function of the x’s:

E(n; | @i, ..., ¢r) = T\ + ... + zhpdr,
we can then write

mi=xgM+.. +ipdr+6;,  E0i|za,...,z0) =0, (2]
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and substituting [2] in [1], we get the reduced form model
yh =gy 4. 4 aemrtes,  (t=1,...,T,i=1,...,N), [3]

where s = Xg if t # 5, Tt = B+ A, and g5 = viz + 6; is the error
term, which is uncorrelated with the x,’s. If we observed the same
individuals over time (i.e. if we had panel data), the reduced form
parameters (m;, t = 1,...,T) could be estimated using the classical
estimators for binary choice models. Thus, once we had the reduced
form estimates, 3 could be estimated by minimum distance, or alter-

natively, a within-groups estimator of 3 could be obtained as proposed
by Bover and Arellano (1997).

The purpose of this paper is to obtain a consistent estimator of 5 when
the data available are time series of independent cross-sections. We
will begin with the estimation of the reduced form parameters in [3].
The problem in this case is that the z;5’s s # t in [3] are not observed
since the individuals are different from period to period!. However, as
explained above, the population can be divided in groups with fixed
membership over time (cohorts) on the basis of a certain characteristic
(see Deaton (1985), Collado (1997)). Let g be the random variable
determining the cohort membership for each individual (i.e. individual
i belongs to cohort ¢ if and only if g, € I;). We define the cohort
population means as z¥, = E(zy | ¢; € I.), and we can assume that
for any individual in a given cohort ¢

Tit = Ty + Sit, Gt v~ 11d(0,X).

Then, we can calculate the cohort sample means as

1
Tet = — > @i =k + Sy [4]
g, €lc
1 . 1
where Set = — Z Gt niid|{0,—2 ),
ncg y ne

where nc is the number of individuals per cohort?. We are assuming
that the variance matrix of the measurement errors is constant across

'When the data are time series of independent cross-sections, the notation used in
equation [3] has to be interpreted as follows: the i index in the equation dated at
period ¢ always refers to the same individual + (although ., s 5 t is not observed).
However, the 7 index in the equation dated at period ¢ refers to a different individual
than the 7 index in the equation dated at period s (s # t).

*We are assuming that nc is constant across cohorts and over time to simplify
notation, but this assumption can be easily relaxed.
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cohorts and over time?. This assumption relies on the homogeneity of
the cohorts chosen.

We can write [3] in terms of the cohort sample means as
yh =y + ..+ Tpmr ey, (t=1,...,T, i=1,...,N), [5]

where €, = i + (2, — ) = €3t + (S — Se), Tt = (Wi, ..., Thp)'
, &= (@, Tip)y Te = (Ters-- o Tep)s S0 = (Sigs- -5 Sip)'s S =
(cy,---»Shp) . The problem in [5] is that the disturbances are corre-
lated with the z.’s. However, assuming that the joint distribution of
the disturbances and the z.’s is normal, we will show how to obtain
a measurement error corrected probit estimator of the reduced form
coefficients in [5].

Under normality, the conditional expectation of the disturbances given
x. is given by

E(e}; | 2c) = ME(Si = S | @) = mT12%; e,
where Xgp = var(z.) = Xz, and X12 =cov(s;—<¢, Z¢) is a block-diagonal
matrix with T blocks & x k.
The s-th block of ¥ is

1
2{2 = COV(gis — Cesy mcs) = COV(§zs = Ces) -'L':s =+ Ccs) = ——7-722’ [6]
and the t-th block is
\ 1. 1
St = cov(Sit—Set, Tet) = COV(Sit —Set, Thy +6et) = EEZ—EEE =0. [7]

The reason why the covariances [6] and [7] are different is the following:
given that the individuals are different from period to period, the i-th
individual in period ¢ is not observed in any other period. Therefore,
¢, is included in the average <. but ¢;5 is not included in Sest

We can also calculate the conditional variance of the disturbances given
Te
* 2 !
V&I‘(En | mC) =0; + ﬂtva'r(gi — Cc | CEC)T"t,

3The homoscedasticity assumption could be relaxed. We could alternatively assume
that the variance of the measurement errors varies across cohorts but it is constant
over time. In this case, we will need a long time series dimension to obtain consistent
estimates of the variance matrices for each cohort.

“Notice that ¢, is the average of the measurement errors for those individuals
belonging to the same cohort than ¢ in period s.
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and

var(s; — ¢c | &) = L11 — T12%55 B1g = Q,
where £33 = var(¢; —¢.) is a block-diagonal matrix with T blocks kX k.
The t-th block is

nc—1
¥ = var(Sit — Set) = o 2z, 8]
and the s-th block s # t is
nc+1
Ll = var(Ges = Ses) = ne %, [9]

The reason why the variances [8] and [9] are different is the same as
explained above for the covariances [6] and [7].

If we define X .
v _ en— Bl | zo)

el =
RV CAES

then e} | z, «~ 19dN(0,1). Thus, we have that

Prob(y = 1| z.) = Prob(e}, > —mizc | zc) =

ﬂ'(ITk + 2122—1 T
Prob (ej; < -t 2 )Tc

e | -
/0% + Qg C)

We can estimate 7; (up to scale o) by pseudo-maximum likelihood
relying on estimates of ¥ and X,. Once we have estimated m¢, t =
1,2,...,T, we can estimate § and A by minimum distance. Let § =
B, XY, A= (N,.., ), L= (my,...,77), [0 = (#y,...,77),7 =
vec(Il) and 7 = vec(II), the minimum distance estimator of 8 is given
by

/ / -1
Prob (8_!£ > _thc - 7Tt2]_2222 T
it =

Vo2 +miQmy

éMD = arg ming (% — ﬂ(@))'W"l(fr —7(6)),

where the optimal choice for W is any consistent estimator of the
asymptotic variance of #. We obtain the asymptotic distribution of #
in the Appendix. The asymptotic distribution of §sp is given by

VC(@up —8) —a N(0O,(DW™D')™),
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where D = 07(0)/06 and W is the asymptotic variance of #. The
asymptotic variance of y/p can be estimated as

&war(Oyp) = (DW D)7,
where D = dn(8p)/ 9.

The estimation method proposed above, could be extended to the ca-
se in which some of the z;’s were not exogenous. Then, we would
assume that the conditional expectation of the endogenous variables
is a linear function of the exogenous variables. Thus, we will need to
estimate a reduced form equation for each of the endogenous variables
in the model, as proposed by Bover and Arellano (1997) in the panel
data context. In this case, the set of exogenous variable, on which we
condition, will include some exogenous variables outside the model in
addition to the exogenous variables in model [1].

3. A within-groups estimators for the binary choice model

We are going to consider an alternative estimator of 3 for the binary
choice model. In the context of panel data, Bover and Arellano (1997)
proposed a within-groups estimator of 3 based on a consistent estima-
tor of m. The advantage of this estimator, compared to the minimum
distance estimator, is that it is very easy to calculate and it does not
involve the estimation of the nuisance parameters A\. The disadvantage
is that it is less efficient than the optimal minimum distance estimator.
Nevertheless, Bover and Arellano (1997) show that it is possible to ob-
tain a linear GMM estimator which is asymptotically equivalent to the
optimal minimum distance. Following this approach, we are going to
consider a within-groups estimator of 3 when the data available are
time series of independent cross-sections.

Let us come back to the model for the latent variable [1]. We can consi-
der the random variable g defined above, which determines the cohort
membership for each individual. Taking expectations conditional on
¢gi in model [1] we get

y:tzxgﬁ"'n:'*'z):ta (t—:l,...,T,C:l,...,C),

where o, = Bt | ; € L), yoy = E(}; | g: € L), 1z = E(n; | g: € L)
and v}y = E(vy | ¢; € I). We can write the model for the cohort
population means as a system of equations

Yo = XcB+mce+ g, [10]
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where y¥ = (y,...,yip), X& = (af,....z}p), vi = (V- v),

and e is a T x 1 vector of ones. We can transform the variables in [10]
into deviations from time means to eliminate the cohort effects. Thus,
we get ;

Je = XeB+ 1, [11]
where 7} = Qy}, X? = QXZ, ¥ = Qu}, and Q = I — ¢/ /T.
Let us now consider the reduced form model [3]. Taking expectations
conditional on g;, we can write the system of T equations as

ys =1z} + €.

We can now apply the deviations from time means operator @ to
obtain

Js = QI'zy + 7. [12]
From [11] and [12] we get the following set of restrictions
X:6 = Q'z;. [13]

Notice that, contrary to what happens in the true panel case, the
cohort population means in [13] are not observed. However, we can
write the set of restrictions in terms of the cohort sample means. We
can define ¥ = (Se1,-.-,Sqr) and ¢ = vec(¥,). The IT matrix can
be written as II' = (Ir ® ' + e ® X') and therefore

M. =T [B+e® Ng.
Multiplying by @ we get
Q's. = QU3 = T.3. [14]

Adding [13] and [14] we get the following set of restrictions between II
and (: )
XCIB = QH/'zCa [15]

and multiplying by X’ we obtain
X'X.8=X1z.. [16]

Therefore, using a consistent estimator of II, we can obtain a within-
groups estimator of B which is consistent. This estimator is given by

A C ~ -~ ._1 C ~
Bwe = (Z X;Xc> (ngﬂ' xc) . [17]
c=1

c=1



268 INVESTIGACIONES ECONOMICAS

Substracting 3 from [17] we get

C
ZX/ IBWG pg) = Z ('xc—)zcﬂ),
c=1

and using [15] we obtain
c C
ZXéXc(IBWG - B) = ZXé(ﬂ - H)Ixc-
c=1 c=1
We can rewrite the expression above as

_10

Bwe =B = (}:X’ ) > (Xe®zc)'vee(Tl - I),

c=1
and the asymptotic distribution of B¢ is given by
\/-O_(BWG_ﬁ) —a N(0, E(Xcl:Xc)_IE(Xc®wc)/WE(XC®xC)E(X</:Xc)—1)

where W is the asymptotic variance of #. The asymptotic variance of
Bwe can be estimated by

-1 ¢
avar(( (ZX Xc) Z Xc®:cc)'W

- c=1 .
Z(Xc ® Tc) (Z szc) )
c=1 c=1

where W is a consistent estimator of W.

4. Monte Carlo simulations

In the previous sections we have derived the asymptotic distribution
of the minimum distance estimator and the within-groups estimator
for the binary choice model, using time series of cross-section data.
However, it also interesting to analyze the small sample performance
of the estimators that we have proposed. For this purpose, we have
carried out some Monte Carlo simulations for different values of the
parameters of the model.

We consider a binary choice model with just one explanatory variable,
where the model for the latent variable is

Yy, = Bt +1; + vig. [18]
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The data have been generated as follows. First, we have generated the
cohort population means for the explanatory variable using an AR[1]
model.

Tgy = Py + Wat-

The initial values for the z;’s have been generated as #dN (0,02 ), the
wy are also 4dN(0,02)) and the first ten cross-sections were discarded.
Notice that the variance of the cohort population means is given by

2
2 Ow

g

Then, for different values of p, we will change o2, to keep constant the
variance of the cohort population means. For each cohort, we generate
the individual observations for the explanatory variable as

.. 2
Tit = Ty +Sit, it~ WdN(0,07).

We generate T' x nc observations per cohort, and for each period we
keep in the sample nc observations corresponding to different indivi-
duals. The individual effects are generated as

n, = MZy + - .o+ Arzr + 05, 0; iidN(O, 0’3),

and we generate the latent variable y}; using [18]. The binary variable
is yt = 1( ¥ > 0).

We carried out experiments for different values of the variances and
different values of the correlation parameter p. The results for a thou-
sand replications are summarized in Table 1. The time dimension is
T =5, the number of cohorts is C' = 50 and the number of individuals
per cohort is nc = 50. The structural parameter [ is set equal to one
and the nuisance parameters (the A’s) are all set equal to one.

As we comment in the introduction, the variable most widely used to
define the cohorts in applied research for linear models is year of birth.
Browning, Deaton and Irish (1985), Attanasio and Weber (1993) and
Blundell, Browning and Meghir (1994)) among others divide the po-
pulation in a small number of cohorts (10 to 20) and the estimators
they use rely on asymptotics in C % T. However, this approach is no
longer valid for the discrete choice model. The reason is that we have
to estimate a probit model for each period, and therefore, our estima-
tors cannot rely on asymptotics in C « T. We need a reasonable large
number of cohorts for our approach to be valid, this is the reason why
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we have considered 50 cohorts in the Monte Carlo experiments. In
applied research we could use year of birth together with the educa-
tion level to define the cohorts®, and we could easily have around 100
cohorts.

TABLE 1

Means, standard deviations and standard errors of the estimators
C=50, nc=50, T=5

MD WG MD WG
o2=1 02=0.5
o2=1 p=0 Mean 0.9684 1.0260 0.9554 1.0397

k St.Dev  0.0682 00741 00885  0.1016

Mean SE  0.0581 0.0683 0.0758 0.0910

p=0.5 Mean 0.9642 1.0335 0.9511 1.0447
St. Dev 0.0833 0.0915 0.1037 0.1147
Mean SE  0.0698 0.0857 0.0897 0.1042

p=0.8 Mean 0.9312 1.0630 0.8995 1.1498
St. Dev 0.1114 0.1439 0.1412 1.0964
Mean SE  0.1008 0.1446 0.1316 1.5187

0'%:0.5 p=0 Mean 0.9883 1.0101 0.9875 1.0140
St. Dev 0.0545 0.0528 0.0701 0.0676
Mean SE  0.0447 0.0502 0.0579 0.0645

p=0.5 Mean 0.9865 1.0156 0.9841 1.0195
St. Dev 0.0685 0.0690 0.0859 0.0835
Mean SE  0.0561 0.0656 0.0716 0.0813

p=0.8 Mean 0.9717 1.0247 0.9641 1.0370
St. Dev 0.0975 0.1058 0.1239 0.1314
Mean SE  0.0820 0.1021 0.1050 0.1263

We considered the optimal minimum distance (MD) estimator and the
within-groups (WG) estimator and we calculated the standard errors
based on the asymptotic distribution of the estimators. As we can see
in Table 1, the finite sample bias of the MD and the WG estimators
is very similar and it is quite small for most of the values of the pa-
rameters. However, when the variance of the measurement errors is
large compared to the variance of the cohort population means, and
the time series correlation is also large, the bias of both estimators is
fairly large. The standard deviation of the MD estimator is generally
smaller than the standard deviation of the WG. This reflects the fact

SBlundell, Duncan and Meghir (1998) estimate a labour supply model using edu-
cation and year of birth to define the cohorts.
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that the WG estimator is less efficient than the optimal MD. If we now
compare the means of the estimated asymptotic standard errors with
the standard deviations, we can say that, for the MD estimator, they
show a downward bias of around 15 to 20 percent. On the contrary,
the asymptotic standard errors of the WG matches quite closely the
finite sample standard deviation for most of the values of the para-
meters that we have considered. Concerning the performance of the
estimators for the different values of p, we can see that the bias is
quite similar when the autocorrelation of the explanatory variables is
not very large. However, when p is large (p = 0.8) the bias is larger.
The standard deviation of the estimators increases with p. Finally,
we are going to analyze the behaviour of the estimators for different
values of the variance of the measurement errors (02) and different
values of the variance of the cohort population means (02). As ex-
pected, both the bias and the standard deviation of the estimators is
smaller, the smaller the variance of the measurement errors, while the
performance of the estimators is better the larger the variance of the
cohort population means.

5. Conclusions

We analyzed in this paper the estimation of binary choice models with
individual effects, when the data are time series of independent cross-
sections. We first obtained a measurement error corrected estimator
of the reduced form parameters using the cohort sample means and
we derived its asymptotic distribution. Based on the reduced form
estimates, we proposed a minimum distance estimator and a within-
groups estimator of the structural parameters. We also obtained the
asymptotic distribution of those estimators.

Finally, we carried out some Monte Carlo simulations to study the
small sample behaviour of our estimators. The main conclusions are
that both estimators perform quite well in relatively small samples.
The standard deviation of the minimum distance estimator is sma-
ller than standard deviation of the within-groups. This reflect the
fact that the minimum distance is asymptotically more efficient then
the within-groups. Another important result is that, for the within-
groups estimator, the asymptotic standard errors are very similar to
the standard deviations, whereas, for the minimum distance estima-
tor, the means of the estimated standard errors show a downward bias
compared to the standard deviations.
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Appendix. Asymptotic Distribution of the Probit Estimator

The maximum likelihood estimator of 7, t = 1,...,T, is asymptotically
equivalent to a Generalized Methods of Moment estimator (GMM) that uses
the optimal set of instruments (see Chamberlain (1987)). Thus, we will de-
rive the asymptotic distribution using the GMM estimator. The conditional

expectation of y;; given Z. is given by
xc> . [A)

Itk + 2122521)1'0

Vo2 +

E(yi | z.) = Prob (aj; <

The expression above can be written as
E(ylt I .’L'c) = F(wmﬂ-taz’zw))

and therefore

E(yzt - F(CL‘C,TQ, Ea Em) | LIIC) =0.
Let ui = yit — F(2c, 7, X, Xz ), the conditional variance of uj; is given by
E(l | 20) = F(xe, 74, 5,%2) X (1 = F(e, 71,5, 25)) = o%(z.).
The optimal set of instruments is therefore

1 OF(z¢, 7,2, 2s)
0'2(1‘0) 87'(',5 ’

and the moment conditions are given by

1 OF(x,mt,2,%
E [(ylt - F(mmﬂ-taza 21‘))0_2(1: ) ( 087; 17)
[

The model is just identified, and the method of moments (MM) estimator 7}
solves the following system of equations

=0.

= 0.

N
—_ E - F * N ) 1ty ~y
N P (y’tt (xc’ﬂ-t ) E? .’E))O_2($C) a’ﬂ't

The optimal instruments are not observable since they depend on 7y, and
therefore, the MM estimator 7} is not feasible. However, we can consider

7t in the instruments as an argument to be estimated and then the MM
estimator is given by

1 OF(xc, 7, 2, 5z)

= A2
5‘2(.’Ec) c’)m 07 [ ]

N

1 N

ﬁ Z(ytt - F(mCa e, 27 EI))
1=1
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where 52(2.) = F(zc, 1, 2, Xz) X (1= F(2¢, 1, 2, £5)). The MM estima-
tor 7y coincides with the maximum likelihood estimator. The reason is that
[A2] are the first order conditions for the maximization of the log-likelihood
function.

Expression [A2] can also be written as

C -
éz(yd - F(xcaﬁhz’ 21‘)) ! 8F(wc,7rt,2, EZ) =0, [A3]

52 (Z’c) 87l't

Yt = — Z Yit-

.ch elc

Unfortunately, ¥ and 3, are not observed but they can be estimated using
the moment conditions:

nc—1

E [(zit — Zot) (@it — Tet)'] = xz,

nc

E [(zc — E(z.))(xc — E(.))'] = Zs.

The expectations can be replaced by their sample counterparts
L e e
o2 =
1< )
5 ;(acc — 2)(ze — 7)) = &,

where

- 1 1
Ye= T Z — Z Tyt — Tet)(Tit — Zet)

t=1 gi €l;

10
T = = L.
PR

Substituting X and X by 3 and f)x in [A3], our MM estimator solves the
system

and

1 OF(xe, 7,5, 5)
(zc) Oy

52 =0,

C
Z Yo — F (2, 71,2, 2s))
c=1
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where 62(z0) = F(xe, 71,5, ) X (1 = F(2e, 1, 2, 50)).

The expression above can be written as
1 C
Ezwwa,m,%o t=1,...,T, [A4]
c=

where wet = (yet, )’ and 4 = (vech(Z)’ vech(3;))6. We can write the
systems of T equations in [A4] as

CZ¢ we, 7,7) =0, [A5]
c=1
where w, = (wly,..., W), II = (#1,...,77) and # = vec({I). Using a

Taylor expansion we can write

c

1 & 1
= ¢( CaAa'AY) = ¢wc,777
\/5; we, F CZ

c=

9 N
+75 2 =) o)

C c
1 Z¢ We, T,7) + \}Ezazp(tg;,w’y)(ﬁ—ﬂ)

Cc:l c=1
C N
1 6¢(wctawa7) ~
\/521 5o (V=) +oplL)
Let
b, = p(2em),
or
3¢(wc,7r,'y)>
D, = E|——=).
! < dy

The D, matrix is block-diagonal with T blocks. The t-th block is

D7l‘t =F <8¢t(wct,ﬂ't,')/)> )
67rt

The vech operator vectorizes a p x p symmetric matrix by selecting the
P X (p+1)/2 elements in the lower triangular part of the matrix.
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Then, we have

C
% Z¢(wc, ,7) + DLVC(# - ) [A6]

-i-D/\/_Z v) + 0p(1) =0,

where 4, = (vech(5.)’,vech((z; — Z)(zc — Z)')')'. We can rewrite [A6] as

C
VO (i - 1) = ~(DL) MIpag D:,]% 3 (e, 1) + 0pl1)
c=1

P(we,m,7) = < 1/),(3:)6_,7; g ) )

and the asymptotic distribution of 7 is

V(i =) —a NO, (D) e D)% (2% ) D),

where Vg = E(p(we, T,7)@(We, 7,7)"). The asymptotic variance of 7 can
be estimated by

W = avar(®) = (DL) " (Ipag : D)V ( Irax ) D71,

v D’Y

where

ﬁﬂ_ — _Zaw ’UJc,ﬂ' 7)

c-l
A ‘9¢ wc 7, 'Y)
D = —__...’__._
y O cz:; ’)’

and

c
V= G Z (we, T, ) p(we, 7,9).
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Resumen

En este trabajo se discute la estimacién de modelos de eleccion binaria con
efectos individuales, cuando los datos disponibles son series temporales de
secciones cruzadas. El modelo que analizamos es un modelo de efectos alea-
torios en el que suponemos que la esperanza condicionada de los efectos in-
dividuales es una funcion lineal de las variables explicativas del modelo. Este
supuesto nos permite obtener estimadores consistentes de los parémetros de
forma reducida. Basandonos en estas estimaciones, consideramos un esti-
mador de distancia minima y un estimador intra-grupos de los pardmetros
estructurales, y calculamos las distribuciones asintdticas de los mismos. Fi-
nalmente, realizamos algunas simulaciones de Monte Carlo para analizar el
comportamiento de nuestros estimadores en muestras finitas.



