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This paper analyzes the equilibrium dynamics of an optimal growth model
with endogenous depreciation, variable capital utilization, and expenditures
on the mawntenance of physical capital. Mantenance reduces the deprecia-
tion of capital, investment s subject to adjustment costs, and the degree of
capital utlization affects the actiity of mamtainance. We establish a set of
sufficient conditions for the exstence and uniqueness of a steady state equali-
brium. We define a “delta golden rule” consistent with the proposed economac
environment and we analyze the dynamac efficiency of this economy. Finally,
the steady state 1s found to be locally saddle-path stable.
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1. Introduction

Most analyses of aggregate economic activity take depreciation as exo-
genously given and ignore that equipment and structures have to be
maintained and repaired. Moreover, an important margin along which
a firm can adjust these activities has to do with the fraction of the ins-
talled capital stock being used. In this paper we develop a neoclassical
growth framework that incorporates the endogenous determination of
these variables. To this end, we augment the optimal growth model
of saving and investment under adjustment costs introduced by Abel
and Blanchard (1983), with a maintenance technology that acts as a
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substitute for investment and depends upon both the intensity with
which physical capital is utilized and its depreciation rate.

The exogenous nature of physical capital depreciation can be some-
what justified by considering a class of putty-putty models of produc-
- tion. However, it is well understood that this particular view of the
capital accumulation process is quite restrictive. From the theoretical
side, the assumption of exponential depreciation dramatically redu-
ces the possible dynamics that an optimal growth model can describe.
This is particularly relevant for growth theory as well as for invest-
ment theory. From the empirical side, the assumption of a constant
depreciation rate turns out to be more in conformity with accounting
principles than with those of economic theory. This is particularly
important with respect to the measurement of physical capital.

There is evidence that the activity of maintaining and repairing equip-
ment and structures (cf. McGrattan and Schmitz, 1999) is both large
relative to investment and a substitute for investment to some ex-
tent. Furthermore, Licandro and Puch (2000) show that incorpora-
ting expenditures on the maintenance and repair of physical capital
into models of aggregate economic activity will change the quantitati-
ve answers to some key questions that have been addressed with these
models.! What it is missing is an analytical framework to characteri-
ze the equilibrium dynamics of the joint determination of investment
rates, depreciation rates and utilization rates. Here, and this is the
contribution of the paper, we give a first step in that direction by
incorporating to the neoclassical growth framework a class of mainte-
nance activities that are related with the capital ageing process and
the decay that results from its use.

Our model specification builds upon previous results in Escribé-Pérez
and Ruiz-Tamarit (1996) and Ruiz-Tamarit (1995). These authors ex-
plore the endogenous determination of depreciation under putty-putty
technologies in partial equilibrium. In doing so, they introduce a main-
tenance activity that allows a reduction in physical depreciation, which
is positively related in turn with the intensity of use of capital under
the depreciation-in use assumption.? We put these ideas to work into

'See also Collard and Kollintzas (2000).

Different specifications of this hypothesis have been discussed in Epstein and
Denny (1980), Bischoff and Kokkelenberg (1987), Motahar (1992) and Burnside
and Eichenbaum (1996). See also Rumbos and Auernheimer (1997) and the refe-
rences therein.
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a general equilibrium framework.

The general equilibrium neoclassical growth model does not allow the
separation of the saving decisions of households from the investment
decisions of firms. By introducing either a two sector technology (cf.
Uzawa, 1964) or installation costs (cf. Abel and Blanchard, 1983) it
is possible to overcome the essentially passive role of investment in
the model. These analyses, however, rely on constant depreciation
rates and full capacity utilization. Here we incorporate a maintenan-
ce technology into the standard growth model with adjustment costs.
This technology allows us to augment the model to include endogenous
depreciation and capital underutilization. Thus, under the necessary
assumptions to derive well-defined investment, depreciation, and uti-
lization functions, we characterize the steady state equilibrium, the
short-run dynamics and the stability properties of our model.

As a result of our technological assumptions, capital underutilization
is optimal and the investment rate is determined simultaneously with
the endogenous depreciation rate. Consequently, the equilibrium path
is dynamically efficient. Furthermore, the long-run equilibrium of our
economy is characterized by a unique optimal capital stock which is
below that of the standard neoclassical growth model with adjust-
ment costs. Consequently, our technological assumptions suggest that
a non-optimal depreciation policy, that ignores maintenance costs and
variable utilization, might lead the economy to an excess of installed
capacity.

In addition, we focus on the analysis of the dynamic properties of op-
timal trajectories. Once we prove local stability we present a set of
numerical computations. We shall illustrate below that the presence
of a simple maintenance costs technology can reasonably reduce the
rate of convergence to the steady-state path. It turns out that these
values of the speed of convergence are more in conformity with those
supported by the empirical evidence. Also, along the optimal trajec-
tories consumption, capital and output are positively related but the
investment rate, defined as the ratio of investment over capital, is in-
versely related with them. Depreciation, utilization and maintenance
rates are also inversely related with capital accumulation along the
convergence path.

These findings provide a framework for the analysis of comparative
dynamics in general equilibrium with these features. The rest of the
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paper is organized as follows. In Section 2 we introduce the model
along with a discussion of the maintenance and adjustment costs te-
chnologies. In Section 3 we show existence and uniqueness of steady
state equilibrium and we characterize optimal solutions. In Section 4
we present stability results. Section 5 concludes.

2. The model and preliminary considerations

The goal here is to formalize endogenous depreciation, capital utiliza-
tion and maintenance costs in the simplest optimal growth economy.
In addition, we retain the assumption that investment is subject to an
adjustment costs technology. The reason is twofold. On the one hand,
this allows us to keep as a benchmark the specification in Abel and
Blanchard (1983). On the other hand, the presence of a simple main-
tenance costs technology can be immediately justified in an economy
where adjustment costs generate a well-defined investment demand
function. We now introduce a general model of optimal growth with
these features.

The economy is populated by a continuum of identical infinitely-lived
households or dynasties that grow at an exogenously given rate n >
0. Each household discounts the future at a constant positive rate
> n, and derives instantaneous utility from the consumption of an
aggregate good, ¢, according to U (¢t), which is an increasing and
strictly concave C? mapping.

The technology is represented by a C? concave production function,
F(K,N), which is increasing and linearly homogeneous in effective
capital, K > 0, and labor, N > 0. The fraction 0 < u < 1 determines
the intensity of use of the installed capital stock K, thus K = K u. N
is also the population size. For simplicity of exposition we ignore the
immediate extension to the case of exogenous technical progress of the
labor augmenting type. Under the previous assumptions on F'(.),

ys = f(ke up), [1]

where y and k are per capita output and per capita capital stock,
respectively. Function f(z) is C?, increasing and strictly concave for
all z > 0, lim,_,o+ f(z) =0 and f(.) satisfies the Inada conditions.

Production may be allocated to consumption, the production of new
capital goods, installation activities and maintenance services. Asso-
ciated to these purchases are the two key ingredients of the present
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analysis, namely: 7) investment is subject to an adjustment costs te-
chnology, and 7i) maintenance and repair are subject to a maintenance
costs technology.

Let us assume that adjustment costs, which are internal to the firm,
are represented by a linearly homogeneous function ®(I, K), increasing
in gross investment, [ > 0, and decreasing in the total capital stock,
K > 0. Then ®(I, K) = ¢(i) K, where i is the rate of gross investment
and ¢(i) is assumed C?, increasing and strictly convex for i > 0, with
lim, o+ ¢() = 0 and lim,_,; ¢'(¢) = +00. Consequently, per capita
adjustment costs are then written as ¢(i)k.

By assumption, maintenance costs are internal to the firm and can
be used to preserve capital goods from depreciation and use. These
maintenance costs are represented by a linearly homogeneous function
M(D, K), decreasing in total depreciation D > 0 and increasing in
effective capital. Consequently, M (D, K) = m(6,u)K, where § > 0 is
the endogenous rate of depreciation. The function m(8, u), the average
maintenance costs, is assumed positive, C?, convex and linearly homo-
geneous on ¢ > 0 and u €]0, 1[. Furthermore, we assume mg(6,u) <0,
mu(6,u) > 0, mss(6,u) > 0, myy(8,1) > 0 and me,(8,u) < 0 for
u €]0,1[ and § > 0. The larger the utilization rate and the smaller the
depreciation rate, the larger the maintenance costs of capital.®

The resource constraint is determined by the following equalities
¢t + (i + ie) + m(bs,we)) ke = f(kt w) 2]

ky = (it — 6¢ — ) ky, (3]

where k denotes the time derivative of per capita physical capital with
respect to time.

In the present setting, every optimal solution may be decentralized as
a competitive equilibrium. Thus, without loss of generality we shall
confine our analysis to, the planner’s problem. The planner’s opti-
mization problem is to choose at each moment in time the rates of
investment, depreciation and capital utilization so as to maximize the
infinite stream of discounted instantaneous utilities, given the resource
constraints [2] and [3], and the initial capital stock, k.

% An equivalent representation of the problem can be achieved by assuming that the
depreciation rate is a function of the utilization rate and the rate of maintenance
costs to capital.
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DEeFINITION 1. An optimal solution for this economy is a set of paths
{ct, is, 0, ug, ki }, for t positive, which solve

0
max / U(cy) e Bt gt [P]
0

subject to [2] and [3], ko > O given, and where all variables are assumed
to be strictly positive and w; strictly smaller than one.

DEFINITION 2. A steady-state equilibrium for this economy is an
optimal solution {c;, i, Ot, Uz, k¢ } to problem [P], such that ki, cz, i, 0;
and u; remain constant.

It is readily shown that not only rates but also equilibrium per capita
variables remain constant at steady state. Consequently, at a steady
state the equilibrium levels grow at the rate n.

An interior optimal solution to problem [P] must satisfy, dropping time
subscripts, the following first order equation system

p=U'0) (1+4() 4

b= =U'(c) ms(6,) |
/(kw) = my (8,0) |

o= U'(0) (i 6(6) + m(6,0) ~ Flkuu) 4+ p(B+5-8) [T
|

=2
L .

k=(i—6-n)k 8]
ct+k (i+G) +m(b,u) = f(k u) [9]

given ko > 0 and the corresponding transversality condition
Jim g1, ki e~(B=n)t —q, [10]

The multiplier p represents the shadow price of an additional unit
of installed capital. The term 1 4 ¢'(4) is the marginal opportunity
cost of gross investment. Then, equation [4] states that this marginal
cost must be equal to the shadow price of capital. On the other hand,
—mg(6,u) is the marginal saving in maintenance costs associated to an
increase in the depreciation rate. An increase in § reduces the capital
stock and, hence, maintenance expenditures. So, equation [5] states
that this marginal saving must be equal to the shadow price of capital.
The term m,(6,u) is the marginal maintenance cost associated to an
increase in the utilization rate. Equation [6] states that this marginal
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cost must be equal to the marginal productivity of such an increase in
the utilization rate, measured by the term f'(k u).

From [4] to [6] and [9], we can write ¢ = c(k, ), i = i(k, u) , § = 6(k, 1)
and v = u(k, 4). Additionally, combining [4] to [7] and the assumption
that m(8, u) is linearly homogeneous, the dynamic system [7] and [§]
can be written in the phase space as

where

Indeed, H (i) summarizes all the marginal effects on the return to ca-
pital. From the assumed properties of function ¢(i), we can easily
prove that H(¢) > 0, H'(i) > 0 and H(i) < 4, for all i > 0. Moreover,
lim; o+ H(:) = 0 and from 'Hopital rule and after some elementary
calculations, lim,,; o H (i) = +00. In order to analyze this dynamic
system, we first show existence and uniqueness of a steady state and
then local stability.

3. Characterization of steady state solutions

The above optimization problem differs from the standard optimal
growth model with adjustment costs because of the presence of main-
tenance costs and the underutilization of capital. Therefore, before
discussing the properties of the optimal steady state, we establish its
existence and uniqueness in Proposition 1. We also define a golden
rule for this economy, that we call delta golden rule, and we study the
dynamic efficiency of the unique steady state solution and its relation
with those corresponding to the benchmark neoclassical framework.

3.1 Emistence and uniqueness of steady state solutions

The following proposition establishes sufficient conditions for the exis-
tence and uniqueness of a steady state equilibrium.

ProrosiTiON 1. Under the following limit conditions:

i) |lim, o+ ms(8,u)| < 1+ ¢'(n+96), for all § >0
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i) |lim, ;- mg(6,u)| > 1+ ¢'(n+6), for all § > 0
An interior steady state exists and it is unique.

PROOF. From equation [11] H(i) = J at steady state. Given that
H(0) = 0, H'(@) > 0,¥i > 0, and lim; 4o H(i) = +00, we may
easily conclude that for any § > 0 there is only one positive value
for the investment rate, i = H~1(8) > 0. Then, from [12] the steady
state depreciation rate § = H~1(8) — n. Given that H(¢) < 7 and
H'(i) > 0,H7Y(8) > 8 > n, which implies § > 0.

We combine [4] and [5] to obtain 1-+¢' (i) = —ms(6, u). From mey,(6,u)
< 0, the right hand side of this equation is increasing in u. Given ¢
and &, conditions i) and ii) are sufficient for the existence of a unique
solution for u €]0, 1[. From [6], f'(ku) = my,(6,u). Given that ¢ and u
are interior at steady state, m, (6, u) is a strictly positive finite number.
From the Inada conditions imposed on function f(.), there exists one
and only one interior steady state value for k. A steady state value
for ¢ can be obtained from [9], and the existence and uniqueness of
a finite solution for it can be easily verified, given our assumptions
on functions f(.),¢(.) and m(.). To prove positivity, let us combine
[9] with the other optimal conditions and the assumption of linear
homogeneity of m(.) and get

¢ = fku) — f'(ku)ku + k(1 + ¢'(0))(H{i) —n) > 0

Given our assumptions on function f(.), the net of the first two term
on the right hand side is positive. At steady state, H(i) = 3 > n,
which implies that the last term is also positive.

From [4], an interior solution for u exists and is unique.

8.2 The (modified) delta golden rule

In our framework, the feasibility constraint at steady state can be
written as

c=flku) —k[d+n+¢(6+n)+m(8u)].

Of course, the degree of capital utilization and the depreciation rate
are not exogenously given. In order to make intertemporal efficiency
comparisons we define a delta golden rule.

DEFINITION 3. The delta golden rule is the value of k consistent with
the maximization of steady state consumption with respect to k, § and
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u, 1.e., the solution of the following system:
fllku)u=26+n+¢6+n)+m(6,u) [13]
f(kw) = my(6,u)

1+¢(6+n) =—ms(8,u).

Notice that the last two equations in Definition 3 are equal to equations
6] and [4]/[5], respectively. In the following proposition, we show that
an interior delta golden rule exists and is unique.

PROPOSITION 2. Under conditions i) and ii) of Proposition 1 together
with n > 0, there is a unique delta golden rule.

ProOOF. Combining the three equations in Definition 3, we get
H(6+n)=n.

Provided that n > 0, since H'(i) > 0, H(n) < n, and lim,_, 1 o H (i) =
400, there exists one and only one ¢ > 0 satisfying Definition 3.

For a finite 6, the left hand side of the last equation in Definition 3 is
constant. The right hand side is increasing in u, since mg, (8, u) < 0.
Then, conditions i) and ii), are sufficient for the existence of a unique
solution for u €]0,1].

Given a finite § > 0 and u €]0, 1], the right hand side of the first equa-
tion in Definition 3 is finite. From f"(.) < 0 and the Inada conditions,
one and only one interior solution for k& does exist.

For obvious reasons, any steady state value for the per capita capital
stock that exceeds the delta golden rule value, denoted k,, is dyna-
mically inefficient irrespective of the corresponding values for § and
u. Of course, the steady state of our model economy, denoted k*, is
optimal and verifies that k* < k. For further comparative analysis
it is convenient to express equation [11] at steady state equilibrium
values

FE* w)u* = 8"+ B+ ¢(6* +n) +m(8*, u*) + (8 —n)¢ (§* +n), [14]

We call this equation the modified delta golden rule, to distingufsh it
from the modified golden rule of the Ramsey-Cass-Koopmans model.
We should note from [14] that determination of the optimal capital
stock requires the simultaneous determination of all congrol variables.
Consequently, there are important sources of variation in steady-state
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solutions related to changes in the parameters of the maintenance and
adjustment costs technologies. This is an important implication of
our model specification that goes beyond the somewhat counterfactual
differences in preferences, population growth and technical progress
the standard model needs to account for income differences across
countries.

The following proposition shows the relation between the modified
delta golden rule and the delta golden rule for some key variables.

PROPOSITION 3. The following relations between the modified delta
golden rule and the delta golden rule must hold: §* > 64, 1* > ig,
uw* > ug, K < kg and y* <y,

PROOF. The golden rule implies §, = H~1(n)—n, while at steady state
§* = HY(8) — n. Since 8 > n and H(.) is monotonically increasing,

H718 > H™Y(n). Thus, §* > §,.
Moreover, given i, = 6, +n = H™*(n) and ¢* = §" +n = H™'3, we
also conclude that 7* > 4.

For both the golden and the modified golden rule, 1+ ¢'(§ + n) =
—mg(0,u). Given that ¢" > 0 and §* > &4, then 1+ ¢/(6, +n) <
144/ (8*+n), implying that ms(8y, ug) > ms(6*,u*). Now, givenmsgs >
0,ms(6*,u*) > ms(bg,u*). The previous statements imply that
me(bg,ug) > ms(6*,u*) > ms(bg,u*), and the comparison between
the two extreme terms, given mg, < 0, says that uv* > u,.

By definition, the golden rule implies ¢, > ¢*. Using the aggregate
resource constraint, we get

f(kgug) — (6g + n+ ¢(8g + 1) +m(bg,uq))kg >
FE* ) = (6" +n+ ¢(6" +n) + m(6*,u"))k*.

Then, using equation [13] and [14], and rearranging terms we obtain
the following inequality:

f(kqug) — f'(kqug)kqug >
fE*u) — f/(B*u*)k*u* + (8 —n)[1 + ¢'(§* +n)]k* >
fk*u*) — fl(K*u* )k u*.

So, given the strict concavity of the production function we may easly

conclude that kqug > k*u*. Then given uy < u*, it becomes obvious
that k* < ky.
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From the previous result, y* < y,.

Thus, a higher productivity of physical capital in the long-run is as-
sociated with long-run levels of the depreciation rate, the investment
rate and the utilization rate that are above those of the golden-rule
solution. This result is standard in the optimal growth literature. Less
immediate results show up through comparison with the Ramsey-Cass-
Koopmans and the Abel-Blanchard models.

Indeed, the equilibria of the Ramsey-Cass-Koopmans model (say, kg)
and that of Abel and Blanchard (say, k4) are characterized by

flkr)=6+p [15]

and ) Ny
f'(ka) = 8+ B+ (6 +n)+ (8 —n)p (§+n) [16]

respectively, where the utilization rate is supposed to be equal to one
and the depreciation rate is an exogenous parameter. Under standard
assumptions on the adjustment cost function, &5() should be positive,
which implies that k4 < kg. In Proposition 4, we compare the Abel
and Blanchard steady state equilibrium with our delta and modified
delta golden rules. In order to do this comparison, we assume that § =
8 +m*, where m* = m(6*,u*), and @) = ¢(i — m*). The rationale
for these assumptions is the following. In our model, maintenance and
repair are considered separate economic activities, but in Abel and
Blanchard, investment includes them. Consequently, in our model
depreciation is net of maintenance, but not in Abel and Blanchard.
For the same reason, we must renormalize the investment function: it
depends on gross investment in Abel and Blanchard and on investment
net of maintenance in our model.
PROPOSITION 4. k* < kg4 if O(k) = —%—?
PROOF. Since § = 6*+m(6*,u*), d(z) = ¢(x — m(8",u*)) and w< 1,
from [14] and [16] we get f'(k*u*) > f'(k*u*)u*= f'(k,). Consequen-
tly, k*u*< k4 and

<1l

ka _ _f'(ka)ka
Let us define G(k) = f'(k)k. We can easily prove that, for k > 0,
G'(k) > 0 < O(k) < 1. Then,

f(ka)ka
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which completes the proof.

O(k) represents the curvature of the production technology f(k). For
a CES production function with elasticity of substitution larger than
one, this assumption holds for any & > 0. This result can also hold
for a CES production function with gross complementarity, provided
that k4 is not too large, since limy_,¢+ ©(k) = 0 independently of the
elasticity of substitution.

The intuition behind the result in Proposition 4 is straightforward.
A non-optimal depreciation policy, that ignores variable maintenance
costs and utilization, leads the economy to an excess of installed ca-
pacity. However, this excess of capacity is not necessarily dynamically
inefficient.

4, Dynamic analysis of optimal trajectories

In Proposition 5 we prove local stability of the unique interior steady
state equilibrium.

PROPOSITION 5. The unique interior steady state equilibrium of the
dynamic system [11] and [12] is locally saddle-path stable.

PROOF. A first order Taylor expansion of [11] and [12] may be written
in matrix form as

3 _ (k¥ p*) Mk w)\ (k- k*

i) \Telks, ) Tk, ) J\p— )’
where z* denotes the steady state value of z. As it is shown in the
Appendix, the coefficients of the Jacobian matrix J* are:

M(k*,u") = (G — &) >
(k" p") = k°(5, = 6,) >
De(k™,p*) = —p"H'(i*)i; >0
Lu(k*u*) = -—M*H’(z'*)z'; <0
Following Kurz (1968}, the trace of the Jacobian matrix must be:

trace Jx =y; + 7 = K*[i} — 6] — p*H'(i*)i%, = B —n > 0,

where y; and v, are the eigenvalues. On the other hand, the determi-
nant of the Jacobian matrix is:

det J* = ;- vy = " H'(i*)k* (i385 — i5875) < 0 [17]
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Consequently, the two eigenvalues are, respectively, v, = g;—"-{-
2 2
\ﬁ%ﬂ} —|det J*[ > 0 and v = 5= + \/[%ﬂ} — |det J*| < 0.

These features of the Jacobian matrix mean that the system has a
saddle point dynamical structure. So, given the initial condition for
the predetermined variable &y and the transversality condition [10],
the system places on the stable arm and then converges to the steady
state equilibrium. Otherwise the system explodes.

In particular, given ko < k* convergence implies that k(t) increases but
u(t) decreases because ((0) > p*. The speed of convergence, measured
as the absolute value of the negative eigenvalue, is given by v = —v,,
with a2 > 0.

It seems difficult to state general conditions characterizing the speed of
convergence in our model. To further examine the dynamic properties
of the convergence path we resort to numerical computations. First, we
investigate the impact of our technological assumptions in the speed of
convergence of the neoclassical growth model. The following specific
functional forms are used throughout: U(c) = lnc¢, f(ku) = (kw)?,
¢(1) = (b/2)i? and m(8, u) = du?/é.

TABLE |
Effect of parameters b and o on steady-state values and the rates of
convergence

b i o ut k* k, k, vy (%) (%)
10 0.16 0.048 0.85 1.04 1.36 .07  9.72 3.84
6.5 0.40 0.059 1.00 421 5.43 4.22 8.23 3.40
10 0.40 0.048 0.85 4.58 6.07 5.09 6.50 2.80
24 0.40 0.033 0.66 4.89 6.97 6.47 4.12 2.00
140 0.40 0.018 0.55 2.91 5.20 434  2.00 1.10
10 0.75 0.048 0.85 381.80 541.80 61500 250 1.45

We consider our model, together with the Abel and Blanchard model
under the corresponding interpretations of the depreciation rate and
the investment rate as discussed above. We fix parameters § = 0.01,
n = 0.0075 and d = 0.005, the other parameters varying as specified in
Table 1.4 It is worth pointing out that parameter d of the maintenance
costs function affects the steady-state values u*, k* and k, but not the

*The benchmark value of the adjustment cost coefficient, b = 10, is chosen to get a
plausible value for Tobin’s ¢ (1.5). For the benchmark value of the capital elasticity,
o = 0.40, we consider variations in parameter b such that u = 1, v4 = 2% and
v = 2%, respectively.
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rate of convergence. In this table, v 4 is the speed of convergence of
the Abel and Blanchard model.

The main conclusion that can be drawn from Table 1 is that the rate
of convergence in our model is substantially reduced compared with
the standard neoclassical growth model with adjustment costs. Inde-
ed, the decrease in the speed of convergence we obtain assigns more
importance to the transitional dynamics of our model. This result is in
line with related literature that shows the importance of variable utili-
zation rates of capital in shaping the saddle path and the convergence
rate. For instance, Rumbos and Auernheimer (1997) quantitatively
compare the rate of convergence of small open model economies with
fixed and variable utilization rates. They find slower convergence un-
der variable utilization, the absolute differences going up to 18 per
cent. Here we have a lot more intratemporal substitution between in-
vestment and maintenance through a variable utilization rate and an
endogenous depreciation rate; so much so that convergence is at least
twice as fast in the standard neoclassical model with adjustment costs.
Furthermore, for our baseline economy with b = 10 and a = 0.40 we
obtain a rate of convergence which is more in conformity with tho-
se reported in some empirical studies (Barro and Sala-i-Martin, 1992,
report annual rates of convergence of the order of 2 per cent).

Finally, Table 2 summarizes the dynamic behavior of the variables in
our model along the capital accumulation convergence path for alter-
native values of b and «.. In all our numerical experiments consumption
and investment react as in the standard neoclassical model.

TABLE 2
Effect of parameters b and o on the dynamic behavior of variables
along the convergence path

b o du/dk di/dk do/dk de/dk dm/dk
10 0.16 -0.6159 -0.0621 -0.0253 0.0637 -0.0694
6.5 0.40 -0.1752 -0.0163 -0.0082 0.0523 -0.0179
10 0.40 -0.1320  -0.0119 -0.0056 0.0484 -0.0145
24 0.40 -0.0873 -0.0071 -0.0030 0.0444 -0.0115
140 0.40 -0.1089  -0.0057  -0.0020 0.0604 -0.0237
10 0.75 -0.0012 -0.0001 -0.0001 0.0265 -0.0001

As the initial stock of capital is below its steady state value, the op-
timal initial reaction is to accumulate, maintain and utilize capital at
higher rates than in steady state. For this reason, in the adjustment
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process all these rates are decreasing. However, the depreciation rate
does not initially decrease, but increase. This depends crucially on the
negative sign of the cross derivative in the maintenance function: from
5], utilization and depreciation move in the same direction.

5. Conclusions

In this paper we introduce maintenance costs, endogenous depreciation
and capital utilization rates in an otherwise optimal growth model with
investment adjustment costs. Our model specification generalizes that
of Abel and Blanchard (1983) and provides a theoretical framework for
the analysis of comparative dynamics in a class of general equilibrium
models with capital underutilization and maintenance activities.

The social optimum is characterized by an endogenous simultaneous
determination of the investment rate, the depreciation rate and the uti-
lization rate. This circumstance has some relevant implications. First,
in steady state capital is optimally underutilized and maintenance ac-
tivities are optimally undertaken. Second, we define a delta golden
rule and we show that the steady state equilibrium of our economy
verifies a modified delta golden rule, which is dynamically efficient.
Finally, we show that the unique steady state equilibrium is locally
stable.

But we have taken only one necessary step in characterizing the equili-
brium dynamics of a growth model with endogenous depreciation, capi-
tal underutilization and spending on maintenance and repair. Further
work, in line with Licandro and Puch (2000), is needed to definitively
establish the extent to which including these features in aggregate mo-
dels will change the answers to quantitative questions.

Appendix. Control functions and their partial derivatives at steady
state

Taking equations [4]-6], [9], and the production function in intensive form
y = f(ku), we can implicitly define the following optimal control functions:
u = u(k,p), i = i(k,p), 6 = 8(k,p), ¢ = c(k,p), and y = y(k, p).
Via the implicit function theorem we can identify the corresponding partial
effects, evaluated at the steady state where H(i) + 6 —i = 3 —n > 0:

£"u{[U"2¢" mes — U" klms|*U'mss — U'¢"U"Klms]?}
A

Up =
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where A = —U'¢" U"k[ms|*[mue— f"k] = £ kU'mgs[U'¢" —U"k[ms]?] >

0. Finally, after some elementary manipulations, we obtain that 7 — 6 > 0.
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Resumen

En este articulo se analiza lo dindmica de un modelo de crecimiento que
incorpora depreciacion enddgena, whilizacion variable del capital y gastos de
mantensmaento. La actividad de mantenymiento reduce la depreciacion del
capstal, la wnversion estd swjeta a costes y el grado de utilizacion del capital
afecta a los costes de mantenvmiento. En este marco se establecen condiciones
suficrentes para la exwstencia y unicidad del equalibrio de largo plazo. Ademds,
se define una “delta golden rule” consistente con la economia considerada y
se analiza la eficiencia dindmica de esta economia. Por tltimo se muestra
que el estado estacionario es localmente estable

Palabras clave: Depreciacion, utihzacion del capital, crecimiento dptimo.
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