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Thas paper shows that multiple and globally mdeterminate long-run growth
rates can easily arise in the two-sector growth model wntroduced by Lucas
(1988). This result 1s generated by the existence of dimimshing returns to
time at the private level m human capital accumulation and the existence of
external effects from human capital stock in production. The paper asserts
that two interior balanced growth paths arise under o sufficiently large elas-
ticaty of wntertemporal substitution. One 15 locally determinate, whereas the
other can be locally wndeterminate. Furthermore, we show that these balanced
growth paths can also be globally indeterminate.
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1. Introduction

This paper obtains additional implications for the equilibrium dyna-
mics in the endogenous growth model introduced by the seminal paper
of Lucas (1988). Such a model emphasizes that human capital accu-
mulation is one of the relevant sources of perpetual growth of income.
Moreover, the original formulation assumes that the rate of human ca-
pital accumulation is linear in time, and considers that the sector pro-
ducing physical goods exhibits a positive external effect arising from
the average stock of human capital. Under these assumptions, the mo-
del exhibits dynamics that have received special consideration in the
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literature (see, e.g., Caballé and Santos, 1993, and Mulligan and Sala-
i-Martin, 1993). The Lucas model (1988) predicts that growth rates
in countries with identical fundamentals tend to converge in the long
run, whereas their income levels may be equal only if they have iden-
tical departure conditions. Furthermore, Benhabib and Perli {1994)
and Xie (1994) prove that the equilibrium can be indeterminate in the
sense that there can exist a continuum of equilibrium paths converging
to a unique long-run balanced growth path (BGP henceforth). This
means that the income levels could be permanently different across co-
untries, even if they have both identical fundamentals and an identical
initial composition of physical and human capital.

Therefore, the original Lucas model does not account for multiple long-
run growth rates. This result seems partially unsatisfactory. Levine
and Renelt (1992) have shown the lack of robustness of the empiri-
cal results explaining differences in the growth rate of countries by
institutional and policy differences, and by differences in the rate of
factor accumulation.! Hence, it seems interesting to search for sources
of multiplicity in the endogenous growth model with human capital.
Ladrén de Guevara, Ortigueira and Santos (1997) obtain multiplicity
of BGPs by including pure leisure in the utility function. Their model
accounts for a disparity of long-run growth rates depending on the
initial endowments of physical capital and human capital. In this ca-
se, history then determines the fate of the economy. Chamley (1993)
proved that multiple long-run growth rates can appear when an ex-
ternality arising from the average “learning” time is considered in the
sector accumulating human capital. Moreover, Benhabib and Perli
(1994) show that if the human capital sector exhibits social increa-
sing returns to time, global indeterminacy is also possible, in the sense
that there may exist a range of initial conditions under which there
are multiple equilibrium paths leading to different BGPs. In this case,
the realization of a specific long-run growth rate depends entirely on
the initial decisions of individuals, which are driven by self-fulfilling
prophecies. Hence, this model predicts that identical countries can
exhibit in the limit not only different income levels, but also different
growth rates.

The present paper shows that multiple long-run growth rates are also
possible in the Lucas model (1988) without considering either leisure in

'Recently, Jones (1995) has obtained further empirical evidence confirming the
absence of growth effects of fiscal policies.
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the utility function or externalities in the sector accumulating human
capital. We extend the original model to allow for a rate of human
capital accumulation that is strictly concave in time, together with a
human capital externality in production. The assumption of private
diminishing returns to “learning” time seems quite appropriate. One of
the traditional results obtained by the literature on life-cycle earnings
is that the elasticity of human capital accumulation with respect to
time is smaller than unity. For instance, in an empirical investigation of
the lifetime earnings of the U.S. male high school and college graduates
for the period 1960-1970, Rosen (1976) estimated this elasticity to be
0.65. In a general equilibrium framework, Lucas (1990a) estimated a
value of 0.8 for such elasticity using U.S. data from 1955 to 1985.2

In the previous environment, two BGPs emerge when the externality
and the elasticity of intertemporal substitution are both sufficiently
large. One of them is locally determinate, whereas the other is either
locally indeterminate or locally unstable. Moreover, given this local
dynamic behavior, the multiplicity of BGPs may also render global
indeterminacy of equilibrium. Hence, multiplicity and global indeter-
minacy are also feasible in a simpler version of the Lucas model (1988),
so that these phenomena are more pervasive than one could expect.

The mechanism generating multiplicity and global indeterminacy in
our model is quite straightforward. There are two countervailing for-
ces affecting the allocation of time to human capital accumulation. On
the one hand, the presence of a human capital externality generates
a complementarity between the accumulation of human capital and
the production of physical goods. Thus, the time currently spent in
accumulating human capital will increase the marginal productivity
of human capital in the sector producing physical goods, and so the
return to human capital investments. This fact stimulates individuals
to reallocate time to human capital accumulation and to substitute
future consumption for present consumption. On the other hand, di-
minishing returns to time in human capital accumulation discourages
individuals from spending a large amount of time in order to obtain an
additional unit of new human capital, which raises present consump-
tion. If the elasticity of intertemporal substitution is sufficiently high,

?This assumption has already been assumed in different versions of the two-sector
model of endogenous growth (see, e.g., Uzawa, 1965, Lucas, 1990a, and Caballé
and Santos, 1993). However, none of these models allowed for the existence of an
externality in production.
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any of these two forces can dominate, so that individuals’ expectations
determine the allocation of time between the two sectors. For instance
if individuals expect a high return to human capital investments, they
allocate a larger fraction of time to accumulating human capital in
spite of the diminishing returns. Because of the externality, the ex-
pectations become self-fulfilling. The result is a model in which there
may be two BGPs, each of which is defined by an alternative fraction
of time devoted to accumulating human capital.

Before closing this section, we would like to give some insights on the
empirical relevance of our result. First, this paper shares with the pre-
vious endogenous growth models with human capital the result that
equilibrium indeterminacy needs an unrealistically high elasticity of
intertemporal substitution. However, this problem may be solved by
incorporating other assumptions in the model. We will not incorporate
them to avoid their hiding the mechanisms generating the multiplicity
and indeterminacy of equilibria. In any case, in the conclusion of the
paper we will mention a few mechanisms which would serve as a step
in this research. Secondly, indeterminacy implies a problem of coor-
dination failure. How do individuals coordinate their expectations for
selecting an equilibrium path? Evidently, when multiple equilibrium
paths exist, they can be ranked following the welfare criterion. Ho-
wever, the question is how individuals agree to select the equilibrium
path generating the highest welfare. Hence, one should further look
for alternative mechanisms of equilibrium selection. Nevertheless, this
question remains open since this is not the scope of the paper.

The rest of the paper is organized as follows. The model is presented
in Section 2, where the competitive equilibrium of the economy is cha-
racterized. Section 3 discusses the necessary and sufficient conditions
for the existence of multiple BGPs, whereas Section 4 analyzes the
global equilibrium dynamics of the model. Section 5 closes the paper
with some concluding remarks.

2. The model

We extend the two-sector model of endogenous growth introduced by
Lucas (1988) to allow for a strictly concave rate of human capital
accumulation. Formally, as in Lucas (1990a), the technology of human
capital accumulation we postulate is A(t) = h(t)y(1 — u(t))~, where
h(t) is human capital, 1 — u(t) is the fraction of non-leisure time that
each individual allocates to accumulating human capital through non-
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market activities, v is a positive technology parameter, and o is a
constant belonging to the open interval (0,1).

We now turn to the exposition and analysis of the model. The problem
each individual faces in a decentralized economy is given by

o0 C(t)l—o_l ot
{Gfg%}/o [ 1o }6 & 2
subject to
K(t) = AK(®)(ut)h(t))'"ha(t)* - C(), [1]
M) = Byl —u(t)], 2]
Ct) > 0, u(t)el0,1], K@) >0, h(t) >0,
K(0) = Ko, h(0)= ho,

where C(t) is consumption, K (t) is physical capital, h,(t) is the avera-
ge level of human capital, u(t) is the fraction of time allocated to the
production of physical goods, A is a positive technology parameter, 3
is the share of physical capital, v is a positive externality parameter
in the accumulation of human capital, p is a positive discount rate,
and ¢ > 0 is the inverse of the intertemporal elasticity of substitution.
For notational convenience, we index the fundamentals of the model
by the vector of parameters §. We then define § = (4,7, p,0,v,a, ),
and 0 € ©, where © = RY | x R, x (0,1)%

The problem [P] is a standard dynamic optimization problem with
control variables C(t) and u(t), and state variables K(t) and h(z).
Notice that individuals take h,(t)” as an exogenously given function
of time. The necessary conditions for an optimum can be found from
the solution of the current-value Hamiltonian equation3

1-0 _
H(C\u, K, by A1, he) = g’l_..?'l' =
)\1(AK5(uh)1—ﬁhg —C) + o(hy(1 —u)t™9), 3

where A\ and Ag are the associated costate variables. By the stan-
dard procedure, we find the first order conditions, then substitute in
the consistency equilibrium condition h = h,, and finally rearrange
the expressions to eliminate A; and \o. The necessary conditions for

3Except when necessary, we will suppress hereafter the time argument of all endo-
genous variables so as to ease the notation. .
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optimality are summarized by an autonomous system of differential
equations in (K, h, C,u):

. K = AKPu=Ppi-Prv_c, 4]
A(t) = hlt)y [1—u(t)}' ™, [5]
g _ % [6AKB—lul—ﬁhl—ﬂ—|—v ——p} , 6]

u(l - u) y
au + B(1 —u)

e
Il
=

{7(1 —ou)(l-uw) =B -v)(1-w)' - ﬁ%} |

Since the associated Hamiltonian is jointly concave in state and control
variables, the first order conditions are also sufficient if in addition the
following transversality conditions are fulfilled:

lim e ” A\ K = 0, 8]
t—00

lim e " Aok = 0. [9]
t—00

DEFINITION 1. A competitive equilibrium consists of paths {K(t), h(t),
C(t),u(t)} that satisfy equations [4] to [9] for the given initial condi-
tions Ky and hy.

DEFINITION 2. A BGP (or steady-state equilibrium) is a set of paths
{K(t),h(t),C(t),u(t)} satisfying Definition 1, such that the variables
K(t),h(t), and C(t) grow at a constant rate, and u(t) is constant.

Since the actual data show a positive investment in physical and human
capital, we shall only focus on cases in which the economy exhibits
interior BGPs, i.e., 0 < u(t) = u* < 1. The next sections will discuss
the existence of interior BGPs and the equilibrium dynamics. We will
use both analytical and numerical arguments for these purposes.

3. Existence and properties of the steady-state equilibria

In this section we investigate the properties of the interior BGP and
the conditions for its existence. First, we determine the relationship
among the growth rates of variables along any BGP. We obtain the
same result as Lucas (1988, p. 22).

PROPOSITION 1. Let g3, g and g; denote respectively the growth rates
of K, h and C in a BGP. Then, gf = g* = ((1 - 8+v)/(1 - 0))g}.-



J. ALONSO-CARRERA: DYNAMICS OF A GROWTH MODEL 567

PrOOF. First, combining [6] with [4], we prove that K and C must
grow at the same rate on a BGP. Given this, and since u is constant
along a BGP, we prove directly from (4] that g7 = (1 -8)/(1 -6+

v))gr. QED
In order to proceed with our analysis of the interior BGPs and the

equilibrium dynamics, we introduce the next two transformed varia-
bles:

v = Kh T [10]
T = % [11]

These new variables remain constant along a BGP. By taking logarit-
hms on both [10] and [11], and differentiating with respect to time,
we derive the dynamic equations for z and z. Thus, the dynamic sys-
tem [4]-[7] can be reduced to the following three dimensional system
in (z,2,u):

3= 2{ AP WP~ — (1 —w)tTo, [12]

T :x{ﬂwaAzﬂ"lul_ﬁ-l—x— g}, [13]
u(l— u) o

mﬁ(l —au)(l—u)™* — [14]

V(B = v)(1 - u)'™ ~ fa},

where ¢ = (y(1 - B+ v))/(1 — B). Since the initial value of z is fully
defined by Ky and hg, given these initial conditions, the dynamic equa-
tions [12]-[14] plus the transversality conditions [8] and [9] summarize
the competitive equilibrium paths. Thus, the stationary points of this
reduced system are the candidates to define the interior BGPs. We
next compute the interior steady states of the reduced system [12]-[14].

LEMMA 1. Let 2*, «* and u* be the stationary values of z, x and wu,
respectively. The interior steady states of the dynamic system [12]-[14]
are the solutions of the following system of ordinary equations:

ot = ’7(1 _ﬂa“*) (1 _ u*)—a _ V(ﬂﬁ_ V)

*Note that the new dynamic system [12)-[14] has z as a state-like variable, and @
and u as control-like variables.

(1-w)'™ 5]
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gt Bp + U’Y(ﬂ - V)(l - u*)l_o‘ - afy(l —ou*)(1— u*)—a 1/(6-1)

AB(B-o) 15 ’
’MV—Uﬂf—ﬁ+Vﬂﬂ—uﬂbﬂ+vﬂ—ﬁﬂ1—aw7ﬂ—uﬂﬂx=Pﬂ151
17

PROOF.The results directly follow from setting the system [12]-[14]
expressed in terms of growth rates equal to zero. Q.E.D.

The steady states of the reduced system correspond to interior BGPs
if they satisfy the transversality conditions [8] and [9]. Note that the
latter two conditions are satisfied if the following inequalities hold:

N K
lim ( + 2242 ) < 0,
t—00 >\1

I p+ A + - d 0
tilcglo )\2 h < )

Substituting for the growth rate of both the state and costate variables,
we get that the previous inequalities evaluated at the steady states gi-
ven by the system [15]-[17] reduce to —y(1—a)u*(1—u*)"® < 0, which
always holds for u* belonging to the open interval (0,1). Therefore,
we must impose necessary and sufficient conditions for the existence
of an interior BGP for which u* € (0,1).

ProposiTION 2: Consider the following subsets of ©:

0 = {#eO|o>1-p/yY},

0, = {#cO|o=1-p/Ypandv—0o(l-B+v)>0},
O3 = {#€O|o<l—p/hv—0(1-B8+v)>0
and yn* = p < ¥},

{0€O|o<l—p/Y, v—0(1-B+v)>0
and y7* < p <9},

05 = O\UL, 8,

where n =1+ [(v —o(1 - f+v)) /(a(l - B))].

Then, (i) if 6 € U3_;0,, there exists a unique interior BGP, which is
associated with the triple (2", z*,u*). (ii) If ©4, there exist two interior
BGPs, which are respectively associated with the triples (2},z%,uf)
and (23,5, ub), with u}> u}. (iii) No interior BGP exists if 0 € ©s.

PROOF: See Appendix Al.

1K

64



J. ALONSO-CARRERA: DYNAMICS OF A GROWTH MODEL 569

REMARK 1: The subspaces of parameters ©, and ©3 are exclusively
composed by isolated points in ©. Hence, the unique interior BGP that
exists when # belongs to ©, U ©3 is a non-generic equilibrium since an
arbitrarily small perturbation of some parameter may alter its proper-
ties. More precisely, if 6 initially lies in ©5 U ©3, a marginal change in
parameters can move 6 to ©1, ©4 or O, so that the existence, unique-
ness and stability properties of the BGP could change.? Consequently,
from now on we will ignore the study of these non-generic cases.

Proposition 2 shows that uniqueness of interior BGPs is not guarante-
ed. There may exist two long-run growth rates. It is easy to provide an
example of an economy for which there exists a unique interior BGP.
Following Lucas (1988, 1990a, and 1990b) and Mulligan and Sala-i-
Martin (1993), we consider the following set of structural parameters:
A=18=025v=036,a=027=01,p=0065and 0 = 2. Tt
is easy to check that this particular vector of parameters lies in ©1,
and that the unique interior BGP is defined by u* = 0.845382. The
first row of Table 1 presents the stationary values of z, z and u, as well
as the growth rate of per capita income g¢*, the growth rate of human
capital gz, the rental rate of physical capital R, and the saving rate
s* for the previous numerical model.®

An example of the existence of two interior BGPs can also be found
easily. First, the elasticity of intertemporal substitution must be suf-
ficiently high. Moreover, in this case the scale factor v must be suffi-
ciently small to ensure the existence of generic, interior BGPs. Hence,
we can consider the same set of parameters as in the previous exam-
ple, but changing o to 0.15 and 7 to 0.055. One can check that this
particular vector of parameters belongs to ©4, and the two interior
BGPs are defined by v} = 0.617063 and us = 0.503703. The second
row of Table 1 presents the stationary values of the relevant variables

5A particular case of interest could be when 8 goes from ©4 to ©5 through an
element in ©3. This occurs when the first inequality of the third condition defining
Oy is altered ceterss paribus by a continuous change in a parameter. In this case, two
interior BGPs merge into a single one at 3, and then they disappear. Furthermore,
from the stability properties given in Section 4 we would derive that the dynamic
system undergoes a saddle-node bifurcation at this vector 8 in ©j.

We take a broad definition of gross saving. As is usual, we assume that saving
is the proportion of output that is not consumed. However, following Mulligan
and Sala-i-Martin (1993), we take an extensive measure of output by adding the
production of human capital, multiplied by the shadow price of human capital in
units of physical goods. Hence, s(t) = 1 — (C(t)/Q(t)), where Q(t) = Y(t) +
(M2 (8)/ M (8))v(1 — () (D).
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for the economy represented by this particular model.

\ TABLE 1
Steady-state equilibria for alternative parameter sets
Model 1® Model 2®

u* 0.845 u*=0.617 and u*,=0.504
x* ) 0.493 x*=0.245 and x*,=0.241
z*\ 1.991 2*=3.326 and z*,=2.650
g* 0.033 g7 =0.038 and g*,=0.046
g%, 0.022 g;,=0.026 and g*,,=0.031
R* 0.117 R*=0.071 and R*,=0.072
s* 0.200 $*=0.452 and $*,=0.564

Note- (a) A=1, f=0.25, v=0.36, a=0 2, y=0.1, p=0 065, c=2.
(b) A=1, B=0 25, v=0.36, a=0.2, y=0 055, p=0 065, 0=0.15.

We observe that the strict concavity of human capital accumulation
and the externality in production are necessary conditions for the exis-
tence of two interior BGPs. Note that the vector of parameters 6 never
belongs to the subset ©4 when v = 0, whereas if & = 0 the right hand
side of [17] is always monotone in u, so that at most one interior BGP
exists.” However, once we have assumed that o € (0,1) and v > 0, the
inverse of the elasticity of intertemporal substitution is the crucial pa-
rameter that determines the number of interior BGPs, provided that
the parameter v has been controlled to ensure the existence of interior
BGPs. Thus, when o is sufficiently large (small) the economy has one
(two) interior BGP(s). For instance, in our second numerical example,
o = 0.201474 is the bifurcation value of the inverse of the elasticity
of intertemporal substitution at which the number of interior BGPs
_ changes.

4. Equilibrium dynamics

We will now describe the behavior of the system outside of the steady-
state equilibria. We will investigate whether or not the economy con-
verges to the steady-state equilibria, and whether equilibria are either
determinate or indeterminate. We will see that the equilibrium dyna-
mics in the case of a unique BGP are qualitatively identical to those of
the Lucas model. However, we are especially interested in describing
the equilibrium dynamics when two BGPs exist. Before we attempt a

"Caballé and Santos (1993) prove that without externalities and with strictly con-
cave human capital accumulation there always exists a unique interior BGP. On
the other hand, Benhabib and Perli (1994) prove the uniqueness of an interior BGP
under linearity of human capital accumulation and an externality in production.



J. ALONSO-CARRERA: DYNAMICS OF A GROWTH MODEL 571

characterization of the global dynamics, we must start by examining
the local behavior of equilibrium paths around each BGP.

4.1 Local stability properties of the interior BGPs

The local dynamics of the system around a steady state are determined
by the signs of the eigenvalues of the Jacobian matrix corresponding
to the linearized system. The next result establishes the local stability
of the interior BGPs.

ProPOSITION 3: Consider the economy in Proposition 2. Hence,

(i) If § € ©4, then the unique interior BGP is locally a saddle path,
i. e., the equilibrium is locally determinate.

(ii) If 0 € ©4, then the equilibrium is locally determinate around the
interior BGP given by (zf,%,u}), whereas the equilibrium is either
locally indeterminate or locally unstable around the interior BGP de-
fined by (23, %,u3). A sufficient condition for the equilibrium being
locally indeterminate around (23, x3,us) is aus + (6 —v)(1 —uj) < 0.

PROOF: see Appendix A2.

We now provide some numerical examples to illustrate the previous
stability properties. Table 2 presents the eigenvalue structure of the
Jacobian matrix at each of the steady-state equilibria. Model 1 corres-
ponds to a example where # belongs to 01, whereas Models 2, 3 and
4 correspond to examples where 8 belongs to ©4. Moreover, the last
three examples allow us to derive some additional conclusions about
the local stability of (25, x3,u}). First, complex conjugate eigenvalues
exist for some regions of ©4. Hence, the dynamic system [12]-[14] can
exhibit transitional oscillations around (23, %, u3).

Second, we observe that variations in the parameter values can genera-
te changes in the eigenvalue structure of the Jacobian matrix evaluated
at (23,23, u3). For instance, when the vector of parameters goes from
Model 3 to Model 4, the two negative eigenvalues of the Jacobian
matrix transform into positive. In general, we can then divide ©, in
two regions: one where the BGP given by (23,25, u}) is locally inde-
terminate and the other where this BGP is locally unstable. At the
boundary between both regions, which will generically be denoted by
9, the variation in the eigenvalue structure occurs when the real parts
of two complex conjugate eigenvalues change sign since the determi-
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nant of the Jacobian matrix does not become zero at § = 6.8 Hence,
at § = 0 the Jacobian matrix has two pure imaginary eigenvalues to-
gether with the positive one, so that the dynamic system undergoes
a Hopf bifurcation.’ Taking a sufficiently small neighborhood of ,
an invariant closed curve then emerges around the BGP associated
with (23, 2%, us) for those vectors of parameters on one side of 9. As
changes from one side of 8 to the other, the closed curve shrinks and
collapses into the BGP at = 8. Furthermore, these closed curves will
be stable if they appear in the region of ©4 where the BGP is locally
unstable, whereas they will be unstable if they emerge in the region
where the BGP is locally indeterminate. However, in this paper we
do not investigate which of these two cases occurs since this requires
complicated analytical arguments, and moreover we do not need it to
show the global indeterminacy result.

TARBLE 2
Eigenvalue structure for alternative equilibria
&y Ho Hg

Model 1® (z* x* u*)  -0.208995 0.264188 0.114964
Model 2®  (z,% x,* u,*) -0.247278 0.287887 0.004491

(z,%, x,* u,*) -0.242879 0.277599 -0.00340
Model 3@ (Z1 *, X, * 12 *)  -0.022383 0.039092 0.085295

(zz*, xz*, uz*) -0.007+0.0041 -0.007-0.004i 0.033725
Model 4@ (zl*, X, * U, *)  -0.013284 0.033821 0.079631

(z,*, x,% u,*)  0.0025+0.013i  0.0025-0.013i 0.060876

Note (a) A=1, =0.25, v=0.36, a=0.2, ¥=0.1, p=0 065, =2
(b) A=1, f=0.25, v=0.36, 0=0.2, ¥=0.055, p=0.065, 0=0.15.
(c) A=1, =0.8, v=0.1, a=0 04, y=0 05, p=0.055, 6=0.25
(d) A=1, p=0.85, v=0.1, 0:=0.04, 1=0.05, p=0.055, 6=0 25.

4.2 Global equilibrium dynamics

Knowing the precise behavior of the economic system outside of steady-
state equilibria requires a complete characterization of the global equi-
librium dynamics. For this purpose, we use the time-elimination met-
hod introduced by Mulligan (1991).1° In this way, we can numerically
represent the graphs of the policy functions that relate x and u to
z. Furthermore, from these policy functions we could characterize the
equilibrium paths of any other relevant variable.

®Lemma 2 in Appendix A2 proves that this determinant remains negative when the
change in the eigenvalue structure takes place.
*Taking the Models 3 and 4 of Table 3, a numerical example with pure imaginary

eigenvalues appears by continuity for a particular value of 8 between 0.8 and 0.85.
1%See also Mulligan and Sala-i-Martin (1993).
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We first describe the global dynamics for an economy with a unique
BGP. Thus, Figure 1 displays the equilibrium dynamics for the eco-
nomy defined by Model 1 of Table 3. In this case, the two policy
functions z(t) and u(t) are both composed of a single curve that is
downward sloping. These transitional dynamics are then qualitatively
identical to those characterized by Mulligan and Sala-i-Martin (1993)
for the normal growth case (3 < o) in the Uzawa-Lucas model without
externalities.'!

FIGURE 1
The stable path of the BGP given by (z*,x*u*

{a) Work Effort

D.9
0.85
uity 08
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0.7
0.63
1 2 3 4 3
z(t)
(b)Y C{EI/E(E)
0.7
0.6
x(t)U.S
0.4
0.3
1 2 3 4 5
{4

Global dynamics are quite different when the economy exhibits two
interior BCPs. For instance, consider the economy represented by
Model 2 of Table 3. In this case, the policy functions «(t) and u(t)
are both composed of a multiple paths. One of them goes through
the BGP given by (2,2}, u}), whereas all the others cross the BGP

1Gee Caballé and Santos (1993) for more details.
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defined by (23,3, ud). Figure 2 displays the projections of the unique
saddle path crossing (2}, z%,u}). The graphs of z(t) and u(t) are now

FIGURE 2
The stable path of the BGP given by (z,*x,*u,*)
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FIGURE 3
Local indeterminacy of the BGP given by (z,*x,*u,*)

z(t)
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upward sloping as in the paradoxical growth case (3 > o) of the Uzawa-
Lucas model without externalities. In Figure 3, we instead illustrate
graphically that the BGP given by (23, x%, u3) is locally indeterminate.
We depict two equilibrium paths for z(t), which are built from the
same initial condition 2(0) = 2, but different starting values for z and
u, namely (z24(0),u,(0)) = (0.223785,0.484853) and (x4(0), up(0)) =
(0.233166,0.517079). It can be observed that the initial choices of
z and u determine the growth rate of per capita income during the
transition to the BGP given by (25, 25,u5), where this growth rate
will be constant and equal to 0.046475.

Moreover, putting together the path converging to (2, z7],u]) and the
ones converging to (25, x5, us), we observe that Model 2 also exhibits
global indeterminacy in the sense that the initial choices of x and u cru-
cially determine the long-run growth rate. Figure 4 draws two equili-
brium paths for z(t), which exhibit the same initial condition 2(0) = 2,
but different starting values for z and u, namely (z,(0),u4(0)) =
(0.212332,0.585321) and (5(0), up(0)) = (0.223812,0.484831). In this
case, the initial choices of z and u determine not only the growth ra-
te during the transition, but also the long-run growth rate. Thus, if
the initial choice is (24(0),u,(0)) the stationary growth rate will be
0.037768, whereas such a rate will be 0.046475 when the initial choice
is (x(0),u4(0)).

FIGURE 4
Global indeterminacy

5 10 15 20

REMARK 2: We can summarize the results of the numerical analysis
given above to state a conclusion concerning the global uniqueness of
the dynamic equilibrium. When 6 belongs to ©1, the equilibrium is glo-
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bally unique. However, when 6 lies in ©4, we distinguish two different
situations. If the BGP associated with (23,23, u3) is locally unstable
and there are no limit cycles surrounding it, then the equilibrium is
globally unique and it converges to the BGP given by (2,2}, u}). Ot-
herwise, we conjecture that the equilibrium is globally indeterminate
at least for 2zg close to 23. In this case, there is a range of initial condi-
tions for zg in which the equilibrium trajectory is indeterminate, and
may converge to either of the BGPs depending on the initial choice of
x and u.

5. Concluding remarks

This paper has extended the endogenous growth model introduced by
Lucas (1988) to allow only for a rate of human capital accumulation
that is strictly concave in time. We have proved that the following
three requirements must jointly be satisfied for the existence of two
BGPs and for the equilibrium dynamics described in this paper: the
accumulation of human capital must be strictly concave in time, an
average human capital externality must exist in production, and the
elasticity of intertemporal substitution must be sufficiently large. Ot-
herwise, the dynamic system defining the equilibrium paths exhibits
a unique BGP. However, the stability properties of this unique BGP
will be different depending on which of the last conditions fails, When
the strict concavity of human capital accumulation does not hold, the
new BGP is either locally indeterminate or locally unstable. On the
other hand, the new BGP is locally determinate when one of the other
two conditions fails. The latter case also occurs when any two of the
three conditions are jointly violated.

We can then conclude that some properties of the equilibrium dyna-
mics pointed out by Benhabib and Perli (1994) for the original Lucas
model (1988) are not generic. These results are based on the assump-
tion of a linear rate of human capital accumulation, so that a marginal
variation in the degree of the concavity of this rate can drastically alter
the results as we have shown in this paper. Together with the mul-
tiplicity of long-run growth rates, we observe that our version reveals
other differences with respect to the Lucas model. First, it is easy to
check that the subspace of parameters for which a unique and locally
determinate BGP exists is larger in our model. Unlike the original
Lucas model, the previous case occurs in our model without imposing
the discount rate of preferences to be smaller than the scale parame-
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ter of the technology for human capital accumulation. The trade-off
between ”thriftiness” and growth pointed out by Lucas (1988, p.23)
is solved in our model in favor of the latter since there are decreasing
returns to human capital investment. On the other hand, the range of
parameters for which indeterminacy appears is smaller in our model,
though we can also obtain global indeterminacy. In our model the
condition forcing the discount rate of preferences to be larger than the
scale factor of the technology for human capital accumulation does
not ensure the existence of at least one interior BGP, provided the
elasticity of intertemporal substitution is sufficiently large.'?

Obviously, we must also notice at this point that the requirement of a
large elasticity of intertemporal substitution is an obvious limitation
for the empirical relevance of our multiplicity result. However, one
could solve this problem by introducing in our model either (quali-
fied) leisure in the utility function as Ladrén de Guevara, Ortigueira
and Santos (1997) or home production as Benhabib, Rogerson and
Wright (1991). In this way, individuals can reallocate time to the sec-
tor accumulating human capital without reducing the time devoted to
producing consumption goods. Hence, no restriction on the elasticity
of intertemporal substitution would be necessary to obtain the multi-
plicity result. Since the aim of the paper is to show that diminishing
returns in the accumulation of human capital is a sufficient condition
for the existence of multiple BGPs and global indeterminacy of the
equilibrium, we have omitted these solutions in order to make this
conclusion more transparent. Future research should consider this is-
sue as a way of studing the empirical consequences of the source of
indeterminacy presented in this paper.

Appendix Al. Proof of Proposition 2

From [15] and [16] we observe that 2* and z* are continuous functions of u*.
Hence, for the purpose of this proof, we must only determine the conditions
under which at least one interior solution of [17] exists. Define from equation
[17] the following function of u:

Pu) = [v-cd-8+v)]y1-uw)t>+ [ALI]
(1 =81 —ou)(1 —u)* - (1= B)p,
which has domain [0, 1]. This function satisfies the following properties:
2Notice that the first two conditions defining the subspace of parameters for which

multiple BGPs arise jointly imply this requirement. However, the existence of
interior BGPs also requires a third condition.
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(i) Tt is twice continuously differentiable in (0, 1), with

dP(U)_7(1‘0‘){O‘“_’@)“-[u—a(l—ﬂw)] .

du  (1-uw | (1-u)

P'(u)

[A1.2]
(il) P(0)20 if and only if o ; 1-(p/¥).

(iii) P(u) converges to infinity when v approaches one. Hence, there exists
some number ¢ larger than zero, such that P(u) is strictly positive for all «
belonging to (1 —¢,1).

We next search for the interior solutions of P(u) = 0. Let us distinguish the
following cases.

Case A. Assume P(0) > 0. First we must impose a technical condition that
guarantees that the parameter space defined by the condition 0 < 1—(p/¢)
is not empty. Since we must have o > 0, the required condition is p < 1. We
can already characterize the interior solutions under the present situation.
Ifv—o(l-pF+v) <0, then P(u) is an increasing function, and so
there does not exist any u* for which P(u*) = 0. On the other hand, if
v—o0(l~f+v) >0, the derivative [A1.2] is negative for values of u close
to zero, whereas such a derivative is positive for values of u close to one.
Moreover, P(u) is a quasiconvex function in (0,1). Hence, there exists a
unique value of u belonging to (0,1), say u°, which equals such a derivative
to zero. From [A1.2] we obtain this unique critical value of u as

oo v=oll=pftv) AL3

a(l-B)+v—0o(l-F+v)

To ensure at least one interior solution, we must impose the conditions under
which P(u¢) < 0. For that purpose, we first compute that

P(u) = (1= B)1 -u)™(y = (1 - u)%p). [AL4]

From [A1.4] we observe that P(u®) < 0 if and only if v < (1 — u®)%p.
Combining this last condition with [A1.3] we obtain

v—o(l-B8+v)\*
¥ <1—|— ) ) <p. [A1.5]

Hence, when [AL5] holds with strict inequality, the equation P(u) = 0 has
two interior solutions u; and w3, with u] > u® > uj. Whereas, if [A1.5]
holds with equality, then P(u) = 0 has a unique interior solution u©* = u°.
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Case B. Assume P(0) < 0. If v —o(1 — f+v) < 0, then P(u) is an
increasing function, so that there exists a unique u* for which P{u*) = 0.
On the other hand, if v — (1 — 3+ v) > 0, there also exists a unique u*
with P(u*) = 0 since in this situation P(u) is a quasiconvex function.

Case C. Assume P(0) = 0. If v — (1 — f +v) < 0, then P(u) is an
increasing function, so that there does not exist any interior solution for
P(u) = 0. On the other hand, if v — 0(1 — § + v) > 0, there exists a
unique * in (0, 1) for which P(u*) = 0 since in this situation P(u) is a
guasiconvex function.

Appendix A2. Proof of Proposition 3

For the purpose of this appendix, we analyze the eigenvalue structure of the
Jacobian matrix corresponding to the linearization of the system [12]-[14]
around a steady-state equilibrium. The dimension of the unstable manifold
is fully given by the number of eigenvalues with positive eigenvalues. Hence,
we first characterize this Jacobian matrix, which takes the form

ail a2 a13
J=| a1 ag axy |, [A2.1]
a3y a32 ass

whose elements are the partial derivatives of [12], [13] and [14] with respect
to 2, * and u, i.e.,

0% _
= = = (8- 1) A" ()P <o,
02| (e )
3 -
a2 = 5?- = -2 < 0,
o (2*,2* u*)
0z 2 Y(1-8+v)
a3 = — =—-—lan + ——=(1 - a)u* (1 -u*)™®
by 0% - aa:*a
2= 32 (z*7w*,u*) B o} z* 1L
a9y = ?E =z* > 0,
oz (2% * u*)
e = o0x _ B- oi*_a
28 = (9’& (Z*,.’E*,U*) - g U* 11
ou
— —_— = 0,
a31 82 (z*,m*’u*)
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_ ou O Ber(l-w)
az = ozx (2* 2* u*) B au* _|_/8(1 - u*) < 0)
ol (1 - (l—u)™, *
== — - _ 1 _
e Ou (2% ,@* u*) au* + ﬁ(l - u*) [OAU + (B U>( u )}a

where (2*,*,u*) is one of the interior steady-state equilibria found in Sec-
tion 4.

We now compute the sign of the eigenvalues of the Jacobian matrix [A2.1] in
order to characterize the local stability of the system. These eigenvalues are
the roots p, of the following characteristic polynomial:

—13 +Tr(J)pu? - B(J)u+ Det(J) =0, [A2.2]

where Tr(J) and Det(J) respectively denote the trace and the determinant
of the Jacobian matrix [A2.1], and

B(J) = aiz2a2 + a13a31 + azsasz — (a11022 + a11033 + a22033). [A2.3]
Furthermore, the following four lemmas characterize these three coefficients
of the characteristic polynomial [A2.2].

LEMMA 2: Det (J) is positive when P'(u*) < 0, whereas Det(J) is
negative if P’ (u*) > 0.

PROOF: Using the matrix elements a,; computed above, and after a simple
manipulation, we can rewrite Det(J) as follows:

. _ g (1 - @)u* (1 — u)i=e
P = 4 BT )

(@_aa_my)).-“(_l‘%@i).

Since a1 is negative, we observe from [A1.2] that Det(J) has the opposite
sign of P (u*). Thus, the lemma is established. Q.E.D.

LEMMA 3: T'r(J) is negative if and only if 20u* + (26 —v) (1 —u*) <0.
PROOF: Replacing a11, age and agg by their values, Tr(J) transforms into

(1 — a)u*(l — u*)~
ow* + B(1 — u¥)

Tr(J) = 20" + (26— v) (1 —u")].

Thus, the lemma follows directly. Q.E.D.
LEMMA 4: B(J) is negative if au* + (68— v) (1 —u*) <0,
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PROOF: Substituting in [A2.3] for the elements a;; computed above, and
after a simple manipulation, we can rewrite
Blau* + o(1 —u*))

BU) = o+ B — )™ T (o s

Moreover, from [15] to [17] we can check that a1; +2* = y(1 — a)u*(1 —
u*) > 0. Hence, since aj7 is negative, agg < 0 is a sufficient condition for
B(J) to be negative. Therefore, the result is proved by taking the expression
of az3 given above in this appendix. Q.E.D.

LEMMA 5: A sufficient condition for B(J) to be negative is that Tr(J) < 0.
PROOF: It follows directly from Lemmas 3 and 4. Q.E.D.

The characteristic polynomial [A2.2] has three roots, two of them proba-
bly complex but given in a conjugate form. To determine the sign of the
real part of these roots, we will use Routh’s theorem.!®> In our particu-
lar case, this theorem says that the number of roots of [A2.2] with positi-
ve real parts is equal to the number of variations of sign in the sequence:
~1,Tr(J),—B(J)+ (Det(J)/Tr(J)), Det(J). From now on this sequen-
ce will be called the Routh Sequence.'* Hence, we can now prove Proposition
3.

PROOF OF PART (i). From Appendix A.1 we deduce that the derivative
of P(u) is positive at (2*,z*,u*). Hence, the determinant of the Jacobian
matrix evaluated at (2%, 2*,u*) is negative from Lemma 2. The number
of eigenvalues of [A2.1] with positive real parts is then given by the sign of
Tr(J). It Tr(J) is positive, there are always two variations of sign in the
Routh Sequence regardless of the sign of —B(J) + (Det(J)/Tr(J)). If
Tr(J) is negative, —B(J) + (Det(J)/Tr(J)) is positive by Lemma 5, and
then there are also two variations of sign in the aforementioned sequence.
Therefore, the Jacobian matrix [A2.1] evaluated at (2*,z*,u*) always has
one negative eigenvalue and two eigenvalues with positive real parts.

PROOF OF PART (ii). From Appendix Al, we observe that P'(u}) >
0 and P'(u5) < 0. Hence, we can first conclude, following the proof of
part (i), that the Jacobian matrix evaluated at (2§, 2%, u¥) always has one
negative eigenvalue and two eigenvalues with positive real parts. Second, the
determinant of the Jacobian matrix [A2.1] evaluated at (25, 23, u}) is positive
as Lemma 2 establishes. Thus, the number of eigenvalues of [A2.1] evaluated

3See Gantmacher (1960, chapter XV).
14This sequence is actually the first column of Routh’s Scheme corresponding
to the polynomial [A2.2].
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at (23, 75, ul) with positive real parts is given by the sign of Tr(J). XTr(J)
is negative, one variation of sign in the Routh Sequence occurs regardless
of the sign of —B(J) + (Det(J)/Tr(J)). On the other hand, if T'r(J)
is positive, two cases are possible. (i) When B(J) is negative, —B(J) +
(Det(J)/Tr(J)) is positive. Thus, in this case, the Jacobian matrix [A2.1]
evaluated at (25, x5, u3) has one positive eigenvalue and two eigenvalues with
negative real parts. (i) When B(J) is positive, —B(J) + (Det(J)/Tr(J))
can be either positive or negative. Therefore, the Jacobian matrix [A2.1]
evaluated at (24,5, u5) can have either one positive eigenvalue and two
eigenvalues with negative real parts or three eigenvalues with positive real
part.
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Abstract

FEste trabajo muestra que miltiples tasas de crecimientos o largo plazo, las
cuales son globalmente indeterminadas, pueden surgir facilmente en el mo-
delo de crecimiento con dos sectores wntroducido por Lucas (1988). Este re-
sultado estd generado por la existencia de rendvmientos privados decrecientes
en tiempo en el proceso de acumulacion de capital humano en la produccion.
El trabajo sostiene que surgen dos sendas intertores de crecimiento equalibra-
do bago una elasticrdad de sustitucion intemporal lo suficientemente grande.
Una de esas sendas es localmente determinada, mientras que la otra pue-
de ser localmente indeterminada. Ademds, mostramos que esas sendas de
crecimiento equilibrado pueden ser también globalmente indeterminadas.

Palabras clave: Crecimiento enddgeno, capital humano, externalidades, equi-
librio maltiple, mdeterminacion.
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